AUM SAI INSTITUTE OF TECHNICAL EDUCATION NARAYANPUR, BERHAMPUR(GM.)

DEPARTMENT OF ELECTRICAL ENGINEERING

CIRCUIT \& NETWORK THEORY
$3^{\text {rd }}$ SEMESTER

LECTURE NOTE

Prepared By
Er. Sushree Sangita Panda

INDEX

Sl.	Contents
No.	
1	CircuitElementandLaws
2	Magneticcircuit
3	NetworkAnalysis
4	NetworkTheorems
5	CoupledCircuit
7	Transients
8	TwoPortNetwork
9	Filters

CHAPTER1

CircuitElementsandLaws

Voltage

Energy is required for the movement of charge from one point to another. Let W Joules of energy be required to move positive charge Q columbs from a point a to point b in a circuit. We say that a voltage exists between the two points. The voltageV between two points may be defined in terms of energy that would be required if a charge were transferred from one point to the other. Thus, there can be a voltage between two points even if no charge is actually moving from one to the other. Voltage between a and b is given by

$$
\mathrm{V}=\mathrm{W}_{\mathrm{J} / \mathrm{C} \mathrm{Q}}
$$

HenceElectricPotential $(\mathrm{V})=\frac{\text { Workedare }(\mathrm{W}) \text { in Joules }}{\text { Charge }(\mathrm{Q}) \text { incolumbs }}$ Charge(Q)incolumbs

Current:

An electric current is the movement of electric charges along a definite path. In caseof a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when flowing in two infinitely long parallel conductors of negligible crosssection, situated 1meter apart in Vacuum, produces between the conductors a force of 2×10^{-7} Newton per metre length.

Power: Power is defined as the work done per unit time. If a field F newton acts for t seconds through adistance dmetres alonga straight line, work done $\mathrm{W}=$ Fxd N.m. or J. The power P, either generated or dissipated by the circuit element.

$$
\mathrm{P}=\stackrel{\mathrm{W}}{\mathrm{~W}} \underset{\mathrm{t}}{\mathrm{~F}} \frac{\mathrm{t}}{}
$$

Powercan also bewrittenasPower $=\frac{\text { Work }}{\text { time }}$
$=\frac{\text { Work }}{\text { Charge }} \times \frac{\text { Charge }}{\text { Time }}=$ VoltagexCurrent
$\mathrm{P}=\mathrm{V}$ I Iwatt.

Energy: Electric energy W is defined as the Power Consumed in a given time. Hence, if current IAflowsin an element overatimeperiod tsecond, when avoltageVvoltsisapplied across it, the energy consumed is given by

$$
\mathrm{W}=\mathrm{Pxt}=\mathrm{VxIxtJorwatt} . \text { second. }
$$

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of energy is kilowatt. hour (Kwh)

Resistance: AccordingtoOhm's lawpotentialdifference (V)across theends of aconductor is proportional to the current (I) flowing through the conductorata constant temperature. Mathematically Ohm's law is expressed as

> VaIor V=RxI
$\operatorname{OrR}=\frac{\mathrm{V}}{\mathrm{I}}$ whereRistheproportionalityconstantandisdesignatedastheconductor resistanceandhas the unitofOhm(Ω).

Conductance :Voltage is inducedin astationaryconductor when placed ina varying magnetic field. The induced voltage (e) is proportional to the time rate of change of current, di/dt producing the magnetic field.

Thereforee $\alpha{ }^{\text {di }}{ }_{\mathrm{dt}}$
Ore $=L^{\mathrm{di}} \overline{\mathrm{dt}}$
eandiarebothfunctionoftime.TheproportionalityconstantLiscalledinductance. TheUnitofinductance isHenery (H).

Capacitance: A capacitor is a Physical device, which when polarized by an electric field by applying a suitable voltage across it, storesenergy in the form of a charge separation.

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance.
CapacitenceofacapacitorisdefinedasthechargestoredperVoltapplied.

$$
\mathrm{C}={ }^{\mathrm{q}}=\frac{\text { Coulomb }}{\text { Volt }}=\text { Farad } \mathrm{v}
$$

ActiveandpassiveBranch:

A branch is said to be active when it contains one or more energy sources. A passive branch does not contain an energy source.

Branch: Abranchisanelementofthe networkhaving onlytwoterminals.

Bilateralandunilateralelement:

A bilateral element conducts equally well in either direction. Resistors and inductors are examples of bilateralelements. When the current voltage relations are different for the two directions of current flow, the element is said to be unilateral. Diode is an unilateral element.

Linear Elements: When the current and voltage relationship in an element can be simulated by a linear equation either algebraic, differential or integral type, the element is said to be linear element.

Non Linear Elements: When the current and voltage relationship in an element can not besimulated by a linear equation, the element is said to be non linear elements.

Kirchhoff'sVoltageLaw(KVL):

ThealgebraicsumofVoltages(orvoltagedrops)in any closedpathorloopisZero.

ApplicationofKVLwithseriesconnected voltagesource.

Fig.1.1
$\mathrm{V}_{1}+\mathrm{V}_{2}-\mathrm{IR}_{1}-\mathrm{IR}_{2}=0$
$=\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)_{\mathrm{I}}$
$=\mathrm{V}_{1}+\mathrm{V}_{2}$
$\mathrm{R}_{1}+\mathrm{R}_{2}$

ApplicationofKVLwhilevoltagesourcesareconnectedinoppositepolarity.

Fig.1.2
$\mathrm{V}_{1}-\mathrm{IR}_{1}-\mathrm{V}_{2}-\mathrm{IR}_{2}-\mathrm{IR}_{3}=0$
$>\mathrm{V}_{1}-\mathrm{V}_{2}=\mathrm{IR}_{1}+\mathrm{IR}_{2}+\mathrm{IR}_{3}$
$>\mathrm{V}_{1}-\mathrm{V}_{2}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{IR}_{2}+\mathrm{IR}_{3}\right)$

$$
\mathrm{I}=\frac{\mathrm{V}_{\underline{1}}-\mathrm{V}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}
$$

Kirchaoff's CurrentLaw(KCL):

Thealgebraicsumofcurrentsmeetingat ajunction ormodeiszero.

Fig.1.3
Considering five conductors, carrying currents $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$ and I_{5} meeting at a point O . Assuming the incoming currents to be positive and outgoing currents negative.

$$
\begin{aligned}
& \mathrm{I}_{1}+\left(-\mathrm{I}_{2}\right)+\mathrm{I}_{3}+\left(-\mathrm{I}_{4}\right)+\mathrm{I}_{5}=0 \mathrm{I}_{1}- \\
& \mathrm{I}_{2}+\mathrm{I}_{3}-\mathrm{I}_{4}+\mathrm{I}_{5}=0 \\
& \mathrm{I}_{1}+\mathrm{I}_{3}+\mathrm{I}_{5}=\mathrm{I}_{2}+\mathrm{I}_{4}
\end{aligned}
$$

Thus above Law can also be stated as the sum of currents flowing towards any junction in an electric circuit is equal to the sum of the currents flowing away from that junction.

VoltageDivision(SeriesCircuit)

Considering avoltagesource(E)withresistors R_{1} and R_{2} inseriesacrossit.

Fig.1.4

$$
\mathrm{I}=\frac{\mathrm{ER}}{1} \mathrm{t}
$$

VoltagedropacrossR ${ }_{1}=I . \mathrm{R}_{1}=\frac{\text { E. } \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

CurrentDivision:

A parallelcircuitactsas acurrentdivideras the currentdivides inallbranches ina parallel circuit.

Fig.1.5

Fig.shownthecurrentIhasbeendividedinto I_{1} andI I_{2} intwoparallelbrancheswithresistances R_{1} and R_{2} while V is the voltage drop across R_{1} and R_{2}.

$$
\mathrm{I}_{1}=\frac{\mathrm{V}}{\mathrm{R}_{1}} \operatorname{andI}_{2}=\frac{\mathrm{V}}{\mathrm{R}_{2}}
$$

Let $R=$ Totalresistance ofthe circuit.

Hence $\frac{1}{\mathrm{R}}=\frac{1}{+}_{\mathrm{R}_{1}}^{1} \frac{}{\mathrm{R}_{2}}$
$\mathrm{R}=\frac{\underline{R}_{1} \underline{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{E}} \frac{\mathrm{~V}}{\frac{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{1}}{+\mathrm{R}_{2}}}=\frac{\mathrm{V}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1} \mathrm{R}_{2}}
$$

$$
\text { But }=\mathrm{V}=\mathrm{I}_{1} \mathrm{R}_{1}=\mathrm{I}_{2} \mathrm{R}_{2}
$$

$$
>\mathrm{I}=\mathrm{I}_{1} \mathrm{R}_{1}\left(\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{}}\right)
$$

$$
\mathrm{I}=\frac{\mathrm{I}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{2}}
$$

Therefore

$$
\mathrm{I}_{1}=\frac{\mathrm{IR}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Similarlyitcanbederivedthat

CHAPTER2

MagneticCircuits:

Introduction: Magnetic flux lines always form closed loops. The closed path followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path for magnetic flux, just as an electric circuit provides a path for theflow of electric current. In general, the term magnetic circuit applies to any closedpath in space, but in theanalysis of electro-mechanical and electronic system this term is specifically used for circuits containing a major portion of ferromagnetic materials. The study of magnetic circuit concepts is essential in the design, analysis and application of electromagnetic devices like transformers, rotating machines, electromagnetic relays etc.

MagnetomotiveForce(M.M.F):

Flux is produced round any current - carrying coil. In order to produce the required flux density, the coil should have the correct number of turns. The product of the current and the number of turns is defined as the coil magneto motive force (m.m.f).
IfI=Currentthroughthecoil(A) N
=Numberof turnsin thecoil.
Magnetomotiveforce=Currentxturns So
M.M.F = I X N

The unit of M.M.F. is ampere-turn (AT) but itis taken as Ampere(A) since N has no dimensions.

MagneticFieldIntensity

Magnetic Field Intensityis defined as the magneto-motive force per unit lengthof the magnetic flux path. Its symbol is H .
$\operatorname{MagneticfieldIntensity}(\mathrm{H})=\quad \frac{\text { Magnetomotiveforce }}{\text { Meanlengthofthemagneticpath }}$
$\mathrm{H}=F_{l}^{F}=\underset{l}{I . N .}$

Where l is the mean length of the magnetic circuit in meters. Magnetic field intensity is also called magnetic field strength or magnetizing force.

Permeability:-

Every substance possesses a certain power of conducting magnetic lines of force. For example, iron is better conductor for magnetic lines of force thanair(vaccum).Permeabilityofamaterial(μ)isitsconductingpowerfor magnetic lines of force. It is the ratio of theflux density. (B) Producedina material to the magnetic filed strength (H) i.e. $\mu=B_{H}$

Reluctance:

Reluctance (s) is akin to resistance (which limits the electric Current). Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of the opposition offered by a magnetic circuit to the setting up of the flux.

Reluctanceistheratioofmagnetomotiveforcetotheflux.Thus

$$
\mathrm{S}=\mathrm{Mmf} / \phi
$$

Itsunitisampereturnsperwebber(orAT/wb)

Permeance:-

Thereciprocalofreluctanceiscalledthepermeance(symbolA).
Permeance $(A)=1 / S \quad \mathrm{wb} / \mathrm{AT}$
Turn T has no unit.
Hencepermeanceisexpressedinwb/AorHenerys(H).

ElectricFieldversusMagenticField.

Similarities

ElectricField

1) FlowofCurrent(I)
2) Emfisthecauseof flow of current
3) Resistanceoffered to the flow of Current, is called resistance (R)
4)

Conductance $(\sigma)={ }^{1} \frac{}{R}$
5)
6)

Current density is amperespersquare meter.

Current (I) -EMFR/

MagneticField

1) Flowofflux (\varnothing)
2) MMfisthecauseof flow of flux
3) Resistanceofferedto the flow of flux, is called reluctance (S)
4)

$\operatorname{Permitivity}(\mu)=1 / \mathrm{s}$
5)

Fluxdensityisnumber
of lines per square meter.
6) $\quad \operatorname{Flux}(\varnothing)=\mathrm{MMF}_{\mathrm{S}}$

Dissimilarities

1)

Currentactuallyflows in an electric Circuit.
2) Energy is needed as longascurrentflows

1) Fluxdoesnotactually flow in a magnetic circuit.
2) Energy is initially needed to create the magneticflux, butnot
3) Conductance is constant and independentofcurrent strengthataparticular temperature.
tomaintainit.
4) Permeability (or magnetic conductance) dependsonthetotal flux for a particular temperature.

B.H.Curve:

Place a piece of an unmagnetised iron bar AB within the field of a solenoid to magnetise it. The field H produced by the solenoid, is called magnetising field, whose value can be altered (increased or decreased) by changing (increasing or decreasing) the current through the solenoid. If we increase slowly the value of magnetic field (H) from zero to maximum value,the value of flux density (B) varies along 1 to 2 as shown in the figure and the magnetic materials (i.e iron bar) finally attains the maximum value of flux density (Bm) at point 2 and thus becomes magnetically saturated.

Fig. 2.1
Now if value of H is decreased slowly (by decreasing the current in the solenoid) the corresponding value of flux density (B) does not decreases along $2-1$ but decreases some what less rapidly along 2 to 3 . Consequently during the reversal of magnetization, the value of B is not zero, but is ' 13 ' at $\mathrm{H}=0$. In other
wards, during the period of removal of magnetization force (H), the iron bar is not completely demagnetized.

In order todemagnetise the iron bar completely, we have to supply the demagnetisastion force (H) in the opposite direction (i.e. by reserving the direction of current in the solenoid). The value of B is reduced to zero at point4, when $H=' 14$ '. This value of H required to clear off the residual magnetisation, is known as coercive force i.e. the tenacity with which the material holds to its magnetism.

If after obtaining zero value of magnetism, the value of H is made more negative, the iron bar again reaches, finally a state of magnetic saturation at the point 5 , which represents negative saturation. Now ifthe value of H isincreased from negative saturation ($=$ ' 45^{\prime} ') to positive saturation ($=$ ' 12 ') a curve '5,6,7,2' is obtained. The closed loop " $2,3,4,5,6,7,2$ " thus represents one complete cycle of magnetisation and is known as hysteresis loop.

NETWORKANALYSIS

Differentterms aredefinedbelow:

1. Circuit:Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither flow orisintendedflow
2. Network: Acombinationofvariouselectricelements,connectedinany
manner. Whatsoever, is called an electric network
3. Node:itisanequipotentialpointatwhichtwoormorecircuitelements arejoined.
4. Junction:itisthat pointofanetwork where threeormorecircuitelementsarejoined.
5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints.
6. Loop: Itisaclosedpath inacircuitinwhichnoelementor nodeisaccountedmorethan once.
7. Mesh:Itisaloopthatcontainsnootherloopwithinit.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii) nodes iii) junction points iv) branches and v) meshes.

Solution:i)no.of circuitelements $=12$ (9 resistors +3 voltagesources)
ii) no.ofnodes $=10(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{k}, \mathrm{p})$
iii) no. ofjunctionpoints=3(b,e,h)
iv) no.ofbranches=5(bcde,be,bh,befgh,bakh)
v) no.ofmeshes $=3$ (abhk,bcde, befh)

MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions for anetwork.Thesuitabilityofeither meshornodalanalysistoaparticular problemdepends mainly on the number of voltage sources or current sources .If a network has a large number of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they areto beconvertedinto equivalentvoltagesources,if, onthe other hand, thenetworkhas more current sources, nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuitsmesh analysis is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a planar circuit which looks like a non-planar circuit. It has already been discussed that a loopis a closed path. Amesh is definedasa loop which does not contain any other loopswithin it. To apply mesh analysis, our first step is to check whether the circuit is planar or not and the second is to select mesh currents. Finally, writingKirchhoff's voltage law equations in terms of unknowns and solving them leads to the final solution.

Figure 3.2
Observation of the Fig.3.2 indicates that there are two loops abefa,andbcdeb in the network.Letusassumeloopcurrents I_{1} andI ${ }_{2}$ withdirectionsasindicatedinthefigure.

Considering the loop abefa alone, we observe thatcurrent I_{1} is passing through R_{1}, and $\left(I_{1}-I_{2}\right)$ is passing through R_{2}. By applying Kirchhoff's voltage law, we can write

$$
\begin{equation*}
\mathrm{V}_{\mathrm{s} .}=\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{R}_{2}\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \tag{3.1}
\end{equation*}
$$

Figure3.3
Similarly, if we consider the second mesh bcdeb, the current I_{2} is passing through R_{3} and R_{4}, and $\left(I_{2}-I_{1}\right)$ is passing through R_{2}.By applying Kirchhoff's voltage law around the second mesh, we have

$$
\begin{equation*}
\mathrm{R}_{2}\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+\mathrm{R}_{3} \mathrm{I}_{2}+\mathrm{R}_{4} \mathrm{I}_{2}=0 \tag{3.2}
\end{equation*}
$$

Byrearrangingtheaboveequations, thecorrespondingmeshcurrentequationsare

$$
\begin{align*}
& \mathrm{I}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)-\mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{V}_{\mathrm{s}} \\
& -\mathrm{I}_{1} \mathrm{R}_{2}+\left(\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{I}_{2}=0 \tag{3.3}
\end{align*}
$$

By solving the above equations, we can find the currents I_{1} and I_{2},. If we observe Fig.3.3, thecircuit consists offive branches and four nodes, includingthe reference node. The number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of mesh current would be $5-(4-1)=2$.

IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference node than number of linearly independent mesh equations $\mathrm{M}=\mathrm{B}-(\mathrm{N}-1)$.

Example3.2Writethemesh
currentequationsinthecircuit shown
infig3.4anddetermine thecurrents.

Figure3.4
Solution: Assume two mesh currents in the direction as indicated in fig. 3.5.Themesh currentequationsare

Figure3.5
$5 \mathrm{I}_{1}+2\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=10$
$101_{2}+2\left(1_{2}-1_{1}\right)+50=0$
Wecanrearrangetheaboveequationsas $7 \mathrm{I}_{1}$
$-2 \mathrm{I}_{2}=10$
$-2 \mathrm{I}_{1}+12 \mathrm{I}_{2}=-50$
Bysolvingtheabove equations, wehave $I_{1}=0.25 \mathrm{~A}$, and $\mathrm{I}_{2}=-4.125$

Here the current in the second mesh I_{2}, is negative; that is the actual current I_{2} flows opposite to the assumed direction of current in the circuit of fig .3.5.

Example3.3Determine the mesh current I_{1} inthecircuitshowninfig.3.6.

Figure3.6

Solution: From the circuit, we can from the following three mesh equations

$$
\begin{align*}
& 10 I_{1}+5\left(I_{1}+I_{2}\right)+3\left(I_{1}-I_{3}\right)=50 \tag{3.6}\\
& 2 I_{2}+5\left(I_{2}+I_{1}\right)+1\left(I_{2}+I_{3}\right)=10 \tag{3.7}\\
& 3\left(I_{3}-I_{1}\right)+1\left(I_{3}+I_{2}\right)=-5 \tag{3.8}
\end{align*}
$$

Rearrangingtheaboveequationswe get

$$
\begin{array}{r}
18 \mathrm{I}_{1}+5 \mathrm{I}_{2}-3 \mathrm{I}_{3}=50 \\
5 \mathrm{I}_{1}+8 \mathrm{I}_{2}+\mathrm{I}_{3}=10 \\
-3 \mathrm{I}_{1}+\mathrm{I}_{2}+4 \mathrm{I}_{3}=-5 \tag{3.11}
\end{array}
$$

Accordingtothe Cramer'srule
$\mathrm{I}_{1}=\left[\begin{array}{ccc}50 & 5 & -3 \\ 10 & 8 & 1 \\ -5 & 1 & 4 \\ \hline 18 & 5 & -3 \\ 5 & 8 & 1 \\ -3 & 1 & 4\end{array}\right]=\frac{1175}{356}$
OrI $I_{1}=3.3$ ASimilarly,
$\mathrm{I}=\stackrel{\left[\left.\begin{array}{ccc}18 & 50 & -3 \\ 5 & 10 & 1 \\ -3 & -5 & 4\end{array} \right\rvert\,\right.}{\left.2 \left\lvert\, \begin{array}{ccc}18 & 5 & -3 \\ 5 & 8 & 1 \\ -3 & 1 & 4\end{array}\right.\right]}=\frac{-355}{356}$
$\mathrm{OrI}_{2}=-0.997 \mathrm{~A}$
$\mathrm{I}=\left[\begin{array}{ccc}18 & 5 & 50 \\ 5 & 8 & 10 \\ -3 & 1 & -5 \\ \hline 18 & 5 & -3 \\ 5 & 8 & 1 \\ -3 & 1 & 4\end{array}\right]=\frac{525}{356}$
Or $\mathrm{I}_{3}=1.47 \mathrm{~A}$
$\therefore \mathrm{I}_{1}=3.3 \mathrm{~A}, \mathrm{I}_{2}=-0.997 \mathrm{~A}, \mathrm{I}_{3}=1.47 \mathrm{~A}$
MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be writtenby inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

Figure3.7

$$
\begin{array}{lr}
\mathrm{R}_{2}\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+\mathrm{I}_{2} \mathrm{R}_{3}=-\mathrm{V}_{2} & 3.14 \\
\mathrm{R}_{4} \mathrm{I}_{3}+\mathrm{R}_{5} \mathrm{I}_{3}=\mathrm{V}_{2} & 3.15
\end{array}
$$

Reordering theaboveequations,wehave

$$
\begin{align*}
& \left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{I}_{1}-\mathrm{R}_{2} \mathrm{I}_{2}=\mathrm{V}_{1} \\
& -\mathrm{R}_{2} \mathrm{I}_{1}+\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) \mathrm{I}_{2}=-\mathrm{V}_{2} \\
& \left(\mathrm{R}_{4}+\mathrm{R}_{5}\right) \mathrm{I}_{3}=\mathrm{V}_{2}
\end{align*}
$$

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas $\mathrm{R}_{11} \mathrm{I}_{1} \pm$
$\mathrm{R}_{12} \mathrm{I}_{2} \pm \mathrm{R}_{13} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{a}}$

$$
\begin{array}{lr}
\pm \mathrm{R}_{21} \mathrm{I}_{1}+\mathrm{R}_{22} \mathrm{I}_{2} \pm \mathrm{R}_{23} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{b}} & 3.20 \\
\pm \mathrm{R}_{31} \mathrm{I}_{1} \pm \mathrm{R}_{32} \mathrm{I}_{2}+\mathrm{R}_{33} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{c}} & 3.21
\end{array}
$$

By comparing the equations $3.16,3.17$ and 3.18 with equations $3.19,3.20$ and 3.2 respectively, the following observations can be taken into account.

1. Theself-resistanceineachmesh
2. Themutualresistancesbetweenall pairsofmeshesand
3. Thealgebraic sumofthevoltagesineachmesh.

The self-resistance of loop $1, \mathrm{R}_{11}=\mathrm{R}_{1}+\mathrm{R}_{2}$, is the sum of the resistances through which I passes.

The mutual resistance of loop $1, R_{12}=-R_{2}$, is the sum of the resistances common to loop currents I_{1} and I_{2}.If the directions of the currents passing through the common resistances are the same, the mutual resistance will have a positive sign; and if the directions of the currents passing through the common resistance are opposite then the mutual resistance will have a negative sign.
$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{1}$ is the voltage which drives the loop 1 . Here the positive sign is used if the direction of the currents is the same as the direction of the source. If the current direction is opposite to the direction of the source, then the negative sign is used.

Similarly $\mathrm{R}_{22}=\mathrm{R}_{2}+\mathrm{R}_{3}$ and $\mathrm{R}_{33}=\mathrm{R}_{4}+\mathrm{R}_{5}$ are the self-resistances of loops 2 and 3 respectively. The mutual resistances $R_{13}=0, R_{21}=-R_{2}, R_{23}=0, R_{31}=0, R_{32}=0$ are the sums of the resistances common to the mesh currents indicated in their subscripts.
$\mathrm{V}_{\mathrm{b}}=-\mathrm{V}_{2}, \mathrm{~V}_{\mathrm{c}}=\mathrm{V}_{2}$ arethesumofthevoltagesdrivingtheirrespective loops.

Example 3.4write themeshequationforthecircuitshown infig.3.8

Figure3.8
Solution:thegeneralequationforthreemeshequationare
$\mathrm{R}_{11} \mathrm{I}_{1} \pm \mathrm{R}_{12} \mathrm{I}_{2} \pm \mathrm{R}_{13} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{a}}$
$\pm \mathrm{R}_{21} \mathrm{I}_{1}+\mathrm{R}_{22} \mathrm{I}_{2} \pm \mathrm{R}_{23} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{b}}$
$\pm \mathrm{R}_{31} \mathrm{I}_{1} \pm \mathrm{R}_{32} \mathrm{I}_{2}+\mathrm{R}_{33} \mathrm{I}_{3}=\mathrm{V}_{\mathrm{c}}$
Considerequation 3.22
$\mathrm{R}_{11}=$ selfresistanceofloop $1=(1 \Omega+3 \Omega+6 \Omega)=10 \Omega$
$\mathrm{R}_{12}=$ themutualresistancecommontoloop1andloop $2=-3 \Omega$
Herethenegativesignindicatesthat thecurrentsareinoppositedirection. $\mathrm{R}_{13}=$ the
mutual resistance common to loop $1 \& 3=-6 \Omega$
$\mathrm{V}_{\mathrm{a}}=+10 \mathrm{~V}$, the voltage the drivingthe loop1.
Herehepositivesignindicatestheloopcurrent I_{1} isinthesamedirectionasthe source element.

Thereforeequation3.22canbe writtenas

$$
\begin{equation*}
10 \mathrm{I}_{1}-3 \mathrm{I}_{2}-6 \mathrm{I}_{3}=10 \mathrm{~V} \tag{3.25}
\end{equation*}
$$

ConsiderEq.3.23
$\mathrm{R}_{21}=$ themutualresistancecommontoloop 1 andloop $2=-3 \Omega$
$\mathrm{R}_{22}=$ self resistance of loop $2=(3 \Omega+2 \Omega+5 \Omega)=10 \Omega$
$\mathrm{R}_{23}=0$, thereisnocommonresistancebetweenloop2and3. $\mathrm{V}_{\mathrm{b}}=-$
5 V , the voltage driving the loop 2 .
ThereforeEq. 3.23canbewrittenas

$$
\begin{equation*}
-3 \mathrm{I}_{1}+10 \mathrm{I}_{2}=-5 \mathrm{~V} \tag{3.26}
\end{equation*}
$$

ConsiderEq.3.24
$R_{31}=$ themutualresistancecommontoloop 1 andloop $3=-6 \Omega R_{32}=$
the mutual resistance common to loop 3 and loop $2=0 \mathrm{R}_{33}=$ self
resistance of loop $3=(6 \Omega+4 \Omega)=10 \Omega$
$\mathrm{V}_{\mathrm{c}}=$ thealgebraicsumofthevoltage drivingloop3

$$
\begin{equation*}
=(5 \mathrm{~V}+20 \mathrm{~V})=25 \mathrm{~V} \tag{3.27}
\end{equation*}
$$

Therefore,Eq3.24canbewrittenas- $6 \mathrm{I}_{1}+10 \mathrm{I}_{3}=25 \mathrm{~V}$
$-6 \mathrm{I}_{1}-3 \mathrm{I}_{2}-6 \mathrm{I}_{3}=10 \mathrm{~V}$
$-3 \mathrm{I}_{1}+10 \mathrm{I}_{2}=-5 \mathrm{~V}$
$-6 \mathrm{I}_{1}+10 \mathrm{I}_{3}=25 \mathrm{~V}$

SUPERMESHANALYSIS

Suppose any of the branches in thenetwork has acurrent source, then it isslightly difficulto apply mesh analysis straight forward because first we should assume an unknown voltage across the current source, writing mesh equation as before, and then relate the source current to theassignedmesh currents. Thisisgenerally adifficult approach.Onway to overcomethis difficulty is by applying the supermesh technique. Here we have to choose the kind of supermesh. A supermesh is constituted by two adjacent loops that have a common current source. As an example, consider the network shown in the figure 3.9.

Figure3.9

Herethecurrent sourceI isinthecommon boundaryfor thetwomeshesland2. Thiscurrent source creates a supermesh, which is nothing but a combination of meshes 1 and 2 .

$$
\mathrm{R}_{1} \mathrm{I}_{1}+\mathrm{R}_{3}\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)=\mathrm{V}
$$

Or $\quad \mathrm{R}_{1} \mathrm{I}_{1}+\mathrm{R}_{3} \mathrm{I}_{2}-\mathrm{R}_{4} \mathrm{I}_{3}=\mathrm{V}$
Consideringmesh3,wehave
$\mathrm{R}_{3}\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)+\mathrm{R}_{4} \mathrm{I}_{3}=0$
Finally thecurrentI fromcurrent sourceisequaltothedifferencebetweentwomeshcurrents i.e.
$\mathrm{I}_{1}-\mathrm{I}_{2}=\mathrm{I}$
wehavethusformedthreemeshequationswhichwecansolveforthethreeunknown currents in the network.

Example3.5.Determinethecurrentinthe5 2 resistorinthenetworkgiveninFig.3.10

Figure3.10
Solution:-Fromthefirstmesh,i.e.abcda,wehave

$$
\begin{align*}
& 50=10\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)+5\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right) \\
& \text { Or1 } 5 \mathrm{I}_{1}-10 \mathrm{I}_{2}-5 \mathrm{I}_{3}=50 \tag{3.28}
\end{align*}
$$

Fromthesecondandthirdmeshes.wecan form asupermesh

$$
\begin{align*}
& 10\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+2 \mathrm{I}_{2}+\mathrm{I}_{3}+5\left(\mathrm{I}_{3}-\mathrm{I}_{1}\right)=0 \\
& \text { Or- } 15 \mathrm{I}_{1}+12 \mathrm{I}_{2}+6 \mathrm{I}_{3}=0 \tag{3.29}
\end{align*}
$$

Thecurrentsourceisequal tothedifferencebetween IIand IIImesh currents
i.e. $\mathrm{I}_{2}-\mathrm{I}_{3}=2 \mathrm{~A}$

Solving3.28.,3.29and3.30.wehave

$$
\mathrm{I}_{1}=19.99 \mathrm{~A}, \mathrm{I}_{2}=17.33 \mathrm{~A}, \operatorname{andI}_{3}=15.33 \mathrm{~A}
$$

Thecurrentinthe 5Ω resistor $=\mathrm{I}_{1}-\mathrm{I}_{3}$
$=19.99-15.33=4.66 \mathrm{~A}$
The currentinthe5 2 resistoris 4.66 A .
Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the currents, $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}.

Solution ;In fig 3.11, the current source lies on the perimeter of the circuit, and thefirst mesh is ignored. Kirchhoff's voltage law is applied only for second and third meshes

Fromthesecondmesh,wehave

$$
3\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+2\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)+10=0
$$

Or

$$
\begin{equation*}
-3 \mathrm{I}_{1}+5 \mathrm{I}_{2}-2 \mathrm{I}_{3}=-10 \tag{3.31}
\end{equation*}
$$

Fromthethirdmesh,wehave $\mathrm{I}_{3}+$

$$
2\left(I_{3}-I_{2}\right)=10
$$

Or

$$
\begin{equation*}
-2 \mathrm{I}_{2}+3 \mathrm{I}_{3}=10 \tag{3.32}
\end{equation*}
$$

From the first mesh, $\quad \mathrm{I}_{1}=10 \mathrm{~A}$
From the abovethree equations, we get
$\mathrm{I}_{1}=10 \mathrm{~A}, \quad \mathrm{I}_{2}=7.27, \quad \mathrm{I}_{3}=8.18 \mathrm{~A}$

NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it is possible to write $\mathrm{N}-1$ nodal equations by assuming $\mathrm{N}-1$ node voltages. For example,a 10 node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be assigned a number or a letter. The node voltage is the voltage of a given node with respect to oneparticularnode, called thereferencenode, which weassumeat zero potential. In thecircuit shown in fig. 3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at that node with respect to node 3 . Similarly, the voltage at node 2 is the voltage at that node with respect to node 3. Applying Kirchhoff's current law at node 1, the current entering is the current leaving (See Fig.3.13)

Figure3.13

$$
\mathrm{I}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / \mathrm{R}_{2}
$$

Where V_{1} and $_{2}$ arethevoltagesatnode 1and2, respectively.Similarly, atnode
2.the currententeringisequaltothecurrentleaving asshown infig.3.14

Figure3.14
$\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / \mathrm{R}_{2}+\mathrm{V}_{2} / \mathrm{R}_{3}+\mathrm{V}_{2} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)=0$
Rearrangingtheaboveequations,wehave
$\mathrm{V}_{1}\left[1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}\right]-\mathrm{V}_{2}\left(1 / \mathrm{R}_{2}\right)=\mathrm{I}_{1}$
$-\mathrm{V}_{1}\left(1 / \mathrm{R}_{2}\right)+\mathrm{V}_{2}\left[1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}+1 /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)\right]=0$
Fromthe above equationswecanfindthe voltagesateachnode.
Example3.7Determinethevoltagesateachnodeforthecircuitshowninfig3.15

10 V

Figure3.15

Solution: Atnode 1, assumingthatallcurrentsareleaving,wehave ($\mathrm{V}_{1}-$

$$
10) / 10+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 3+\mathrm{V}_{1} / 5+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 3=0
$$

Or $\quad \mathrm{V}_{1}[1 / 10+1 / 3+1 / 5+1 / 3]-\mathrm{V}_{2}[1 / 3+1 / 3]=1$

$$
\begin{equation*}
0.96 \mathrm{~V}_{1}-0.66 \mathrm{~V}_{2}=1 \tag{3.36}
\end{equation*}
$$

At node 2,assuming that all currentsare leaving except the current from current source, wehave

$$
\begin{align*}
& \left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 3+\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 3+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) / 2=5 \\
& -\mathrm{V}_{1}[2 / 3]+\mathrm{V}_{2}[1 / 3+1 / 3+1 / 2]-\mathrm{V}_{3}(1 / 2)=5 \\
& -0.66 \mathrm{~V}_{1}+1.16 \mathrm{~V}_{2}-0.5 \mathrm{~V}_{3}=5 \tag{3.37}
\end{align*}
$$

Atnode3assumingallcurrentsareleaving,wehave ($\mathrm{V}_{3}-$

$$
\begin{align*}
& \left.\mathrm{V}_{2}\right) / 2+\mathrm{V}_{3} / 1+\mathrm{V}_{3} / 6=0 \\
& -0.5 \mathrm{~V}_{2}+1.66 \mathrm{~V}_{3}=0 \tag{3.38}
\end{align*}
$$

ApplyingCramer'srulewe get

$$
\mathrm{V}=\begin{array}{ccc}
{\left[\left.\begin{array}{rrr}
1 & -0.66 & 0 \\
5 & 1.16 & -0.5 \\
0 & -0.5 & 1.66
\end{array} \right\rvert\,\right.} \\
1 & 7.154 \\
\left.\begin{array}{ccc}
0.96 & -0.66 & 0 \\
-0.66 & 1.16 & -0.5 \\
0 & -0.5 & 1.66
\end{array} \right\rvert\, \overline{0.887}=8.06
\end{array}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{V}=\left[\begin{array}{ccc}
0.96 & 1 & 0 \\
-0.66 & 5 & -0.5 \\
0 & 0 & 1.66 \\
\frac{0.96}{} & -0.66 & 0 \\
-0.66 & 1.16 & -0.5 \\
0 & -0.5 & 1.66
\end{array}\right]=\frac{9.06=10.2}{0.887} \\
& \mathrm{~V}=\left[\begin{array}{ccc}
0.96 & -0.66 & 1 \\
-0.66 & 1.16 & 5 \\
0 & -0.5 & 0 \\
3 & {\left[\begin{array}{ccc}
0.96 & -0.66 & 0 \\
-0.66 & 1.16 & -0.5 \\
0 & -0.5 & 1.66
\end{array}\right]=\frac{2.73=3.07}{0.887}}
\end{array}\right.
\end{aligned}
$$

NODALEQUATIONS BYINSPECTION METHOD The nodalequationsfora generalplanarnetwork can also be written by inspectionwithout going through the detailed steps. Consider a three node resistive network, including the reference node, as shown infig 3.16

Infig. 3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now
consider the nodes a and b separately as shown in fig 3.17(a) and (b)

Infig3.17(a),accordingtoKirchhoff'scurrentlawwehave
$\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=0$
$\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{1}\right) / \mathrm{R}_{1}+\mathrm{V}_{\mathrm{a}} / \mathrm{R}_{2}+\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right) / \mathrm{R}_{3}=0$
Infig3.17(b),ifweapplyKirchhoff'scurrentlaw
$\mathrm{I}_{4}+\mathrm{I}_{5}=\mathrm{I}_{3}$
$\therefore\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}\right) / \mathrm{R}_{3}+\mathrm{V}_{\mathrm{b}} / \mathrm{R}_{4}+\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{2}\right) / \mathrm{R}_{5}=0$
Rearrangingtheaboveequationswe get

$$
\begin{align*}
& \left(1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}\right) \mathrm{V}_{\mathrm{a}}-\left(1 / \mathrm{R}_{3}\right) \mathrm{V}_{\mathrm{b}}=\left(1 / \mathrm{R}_{1}\right) \mathrm{V}_{1} \tag{3.41}\\
& \quad\left(-1 / \mathrm{R}_{3}\right) \mathrm{V}_{\mathrm{a}}+\left(1 / \mathrm{R}_{3}+1 / \mathrm{R}_{4}+1 / \mathrm{R}_{5}\right) \mathrm{V}_{\mathrm{b}}=\mathrm{V}_{2} / \mathrm{R}_{5} \tag{3.42}
\end{align*}
$$

In general, theabove equationcanbe writtenas
$\mathrm{G}_{\mathrm{aa}} \mathrm{V}_{\mathrm{a}}+\mathrm{G}_{\mathrm{ab}} \mathrm{V}_{\mathrm{b}}=\mathrm{I}_{1}$
$\mathrm{G}_{\mathrm{ba}} \mathrm{V}_{\mathrm{a}}+\mathrm{G}_{\mathrm{bb}} \mathrm{V}_{\mathrm{b}}=\mathrm{I}_{2}$
By comparing Eqs $3.41,3.42$ and Eqs $3.43,3.44$ we have the self conductance at node a, $G_{a a}=\left(1 / R_{1}+1 / R_{2}+1 / R_{3}\right)$ is the sum of the conductances connected to node a. Similarly, $G_{b b}=\left(1 / R_{3}+1 / R_{4}+1 / R_{5}\right)$ is the sum of the conductances connected to node $b . G_{a b}=\left(-1 / R_{3}\right)$ is the sum of the mutual conductances connected to node a and node b. Here all the mutual conductances have negative signs. Similarly, $\mathrm{G}_{\mathrm{ba}}=\left(-1 / \mathrm{R}_{3}\right)$ is also a mutual conductance connected between nodes b and $a . \mathrm{I}_{1}$ and I_{2} are the sum of the source currents at node a and node b, respectively. The current which drives into the node has positive sign, while the current that drives away from the node has negative sign.

Example3.8forthecircuitshowninthefigure3.18writethenodeequationsbythe inspection method.

Fig3.18

Solution:-

The generalequationsare
$\mathrm{G}_{\mathrm{aa}} \mathrm{V}_{\mathrm{a}}+\mathrm{G}_{\mathrm{ab}} \mathrm{V}_{\mathrm{b}}=\mathrm{I}_{1}$
$\mathrm{G}_{\mathrm{ba}} \mathrm{V}_{\mathrm{a}}+\mathrm{G}_{\mathrm{bb}} \mathrm{V}_{\mathrm{b}}=\mathrm{I}_{2}$
Considerequation 3.45
$\mathrm{G}_{\mathrm{aa}}=(1+1 / 2+1 / 3) \mathrm{mho}$. Theself conductanceatnode a isthesumoftheconductancesconnected to node a.
$\mathrm{G}_{\mathrm{bb}}=(1 / 6+1 / 5+1 / 3)$ mhotheself conductanceatnode b isthesumof conductancesconnected to node b.
$\mathrm{G}_{\mathrm{ab}}=-(1 / 3) \mathrm{mho}$, themutualconductancesbetweennodes a and b isthesumof the conductances connected between node a and b.

SimilarlyG $\mathrm{ba}_{\mathrm{b}}=-(1 / 3)$,thesumofthemutualconductancesbetweennodes b and $a . \mathrm{I}_{1}=10 / 1=10$
A, the source current at node a,
$\mathrm{I}_{2}=(2 / 5+5 / 6)=1.23 \mathrm{~A}$,thesourcecurrentatnode b.
Therefore, the nodal equations are
$1.83 \mathrm{~V}_{\mathrm{a}}-0.33 \mathrm{~V}_{\mathrm{b}}=10$
$-0.33 \mathrm{~V}_{\mathrm{a}}+0.7 \mathrm{~V}_{\mathrm{b}}=1.23$

SUPERNODEANALYSIS

Supposeany of thebranchesin thenetwork hasa voltagesource, thenit isslightly difficult to apply nodal analysis. One way to overcome this difficulty is to apply thesupernode technique. In this method, the two adjacent nodes that are connected by a voltage source are reduced to a single node and then the equations are formed by applying Kirchhoff's current law as usual. This is explained with the help of fig. 3.19

FIG3. 19

It isclearfromthefig.3.19,thatnode4isthereference node.ApplyingKirchhoff's current law at node 1 , we get
$\mathrm{I}=\left(\mathrm{V}_{1} / \mathrm{R}_{1}\right)+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / \mathrm{R}_{2}$
Duetothepresenceofvoltagesource V_{χ} inbetweennodes2and3,itisslightly
difficult to find out the current. The supernode technique can be conveniently applied in this case.

Accordingly,we canwritethecombinedequationfornodes2and3as under.
$\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / \mathrm{R}_{2}+\mathrm{V}_{2} / \mathrm{R}_{3}+\left(\mathrm{V}_{3}-\mathrm{V}_{\mathrm{y}}\right) / \mathrm{R}_{4}+\mathrm{V}_{3} / \mathrm{R}_{5}=0$
Theotherequationis
$\mathrm{V}_{2}-\mathrm{V}_{3}=\mathrm{V}_{\mathrm{x}}$

Fromtheabove threeequations, wecanfindthe threeunknownvoltages.

Example3.9Determinethecurrentinthe 5Ω resistorforthecircuitshowninfig.

$$
2 \Omega
$$

Solution.Atnode1

$$
10=\mathrm{V}_{1} / 3+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 2
$$

Or $\quad \mathrm{V}_{1}[1 / 3+1 / 2]-\left(\mathrm{V}_{2} / 2\right)-10=0$
$0.83 \mathrm{~V}_{1}-0.5 \mathrm{~V}_{2}-10=0$

Atnode2and3,thesupernodeequationis

$$
\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 2+\mathrm{V}_{2} / 1+\left(\mathrm{V}_{3}-10\right) / 5+\mathrm{V}_{3} / 2=0
$$

Or $\quad-\mathrm{V}_{1} / 2+\mathrm{V}_{2}[(1 / 2)+1]+\mathrm{V}_{3}[1 / 5+1 / 2]=2$

Or $\quad-0.5 \mathrm{~V}_{1}+1.5 \mathrm{~V}_{2}+0.7 \mathrm{~V}_{3}-2=0$

The voltagebetweennodes2and3isgivenby
$V_{2}-V_{3}=20$

The current in 5Ω resistor $\mathrm{I}_{5}=\left(\mathrm{V}_{3}-\right.$
10)/5Solvingequation $3.49,3.50$ and 3.51 , weobtai
n
$\mathrm{V}_{3}=-8.42 \mathrm{~V}$
\therefore CurrentsI $_{5}=(-8.42-10) / 5=-3.68 \mathrm{~A}$ (currenttowardsnode 3)i.ethecurrent flows
towards node 3 .

SOURCETRANSFORMATIONTECHNIQUE

In solving networkstofind solutions onemay have to deal with energysources. Ithas already been discussed in chapter 1 that basically, energy sources are either voltage sourcesor current sources. Sometimes it is necessary to convert a voltagesource to a current source or vice-versa. Any practical voltage source consists of an ideal voltage source in series with an internal resistance. Similarly, a practical current source consists of an ideal current source in parallel with an internal resistance as shown in figure3.21. R_{v} and R_{i} represent the internal resistances of the voltage source V_{s}, and current source I_{s}, respectively.

Any source, be it a current source or a voltage source, drives currentthrough its load resistance, andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.Fig 3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe same load resistance R_{L}.
R_{V}

Figure3.22
Fromfig3.22(a)theloadvoltage canbe calculated by usingKirchhoff'svoltage law as
$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{s}}-\mathrm{I}_{\mathrm{L}} \mathrm{R}_{\mathrm{v}}$
Theopencircuitvoltage $\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{s}}$
Theshortcircuitcurrent $\mathrm{I}_{\mathrm{sc}}=V_{s} \frac{}{R_{v}}$
from fig3.22(b)

$$
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}=\mathrm{I}_{\mathrm{s}}-\left(\mathrm{V}_{\mathrm{ab}} / \mathrm{R}_{1}\right)
$$

Theopencircuitvoltage $\mathrm{V}_{\mathrm{oc}}=I_{\mathrm{s}} \mathrm{R}_{1} \mathrm{Th}$
e short circuit current $\mathrm{I}_{\mathrm{sc}}=\mathrm{I}_{\mathrm{s}}$
The above two sources are said to be equal, if they produce equal amounts of current and voltage when they are connected to identical load resistances. Therefore, by equating the open circuit votages and short circuit currents of the above two sources we obtain

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{oc}}=\mathrm{I}_{\mathrm{s}} \mathrm{R}_{\mathrm{l}}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{sc}}= \\
& \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}} / \mathrm{R}_{\mathrm{V}}
\end{aligned}
$$

It follows that

$$
\mathrm{R}_{\mathrm{l}}=\mathrm{R}_{\mathrm{v}}=\mathrm{R}_{\mathrm{s}} ; \quad \mathrm{V}_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}
$$

where R_{s} is the internal resistance of the voltage or current source. Therefore, any practical voltage source, having an ideal voltage $\mathrm{V}_{\text {s }}$ and internal series resistance $\mathrm{R}_{\mathrm{s}} \mathrm{can}$ be replacedbyacurrentsource $\mathrm{I}_{\mathrm{s}}=\mathrm{V}_{s} / \mathrm{R}_{\mathrm{s}}$ inparallelwithaninternalresistance R_{s}. Thereverse
tansformation is also possible. Thus, a practical current source in parallel with an internal resistance R_{s} can be replaced by a voltage source $\mathrm{V}_{s}=I_{s} \mathrm{R}_{\mathrm{s}}$ in series with an internal resistance Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 3.23

Figure3.23
Solution: ThevoltageacrossterminalsAandBisequalto 25 V . sincetheinternalresistance for the current source is 5Ω, the internal resistance of the voltage source is also 5Ω. The equivalent voltage source is shown in fig. 3.24.

Fig3.24
Example3.11Determinetheequivalentcurrentsourceforthevoltagesourceshowninfig.3.25

30Ω

Solution:theshortcircuitcurrentatterminalsAandBisequalto I= 50/30

$$
=1.66 \mathrm{~A}
$$

Fig3. 26
Sincetheinternalresistanceforthevoltagesourceis 30Ω, the internalresistanceof the current source is also 30Ω. The equivalent current source is shown in fig. 3.26.

NETWORKTHEOREMS

Beforestartthetheoremweshouldknowthebasictermsofthenetwork.
Circuit:Itisthecombinationofelectricalelementsthroughwhichcurrent passes is called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral:Itisthecircuitwhoseparameterandcharacteristicschangewith change in the direction ofthe supply application.
Bilateral:Itisthecircuitwhoseparameterandcharacteristicsdonotchange with the supply in either side of the network.
Node:Itistheinterconnectionpointoftwoormorethantwoelementsis called node.
Branch:Itistheinterconnectionpointofthreeormorethanthreeelementsis called branch.
Loop:Itisacompleteclosedpathinacircuitandnoelementornodeistaken more than once.

Super-PositionTheorem :

Statement :"It statesthat ina network oflinear resistancescontaining more than one source the current which flows at any point is the sum of all the currents which would flow at that point if each source were considered separatelyand all other sources replaced for time being leaving its internal resistances if any".

Explanation:

ConsideringE ${ }_{1}$ source

Step1.

R_{2} \&rareinseriesandparallelwith R_{3} andagainserieswith R_{1}

$$
\begin{align*}
& \left(\mathrm{R}_{2}+\mathrm{r}_{2}\right) \| \mathrm{R}_{3} \\
& =\frac{\left(R_{2}+r_{2}\right) R_{3}=m}{R_{2}+r_{2}+R_{3}} \tag{say}\\
& R t_{1}=m+R_{1}+r_{1} \\
& I=E_{1} \\
& 1 \\
& \frac{E_{1}}{R t_{1}} \\
& I= \\
& \frac{I_{1} \times R_{3}}{R_{2}+r_{2}+R_{3}} \\
& I_{\overline{3}}=\frac{I_{1}\left(R_{2}+r_{2}\right)}{R_{2}+r_{2}+R_{3}}
\end{align*}
$$

Step-2
ConsideringE2source, $\mathrm{R}_{1} \& \mathrm{r}_{2}$ areseriesand R_{3} paralleland R_{2} inseries
$\left(\mathrm{R}_{1}+\mathrm{r}_{1}\right) \| \mathrm{R}_{3}$

$=\frac{\left(R_{1}+r_{1}\right) R_{3}=n}{R_{1}+r_{1}+R_{3}}$
$\begin{array}{ll} 2 & \overline{R t_{2}} \\ , \\ I_{21}\left(\underline{\left(R_{1}+r_{1}\right)}\right. \end{array}$
$I_{3}=2+r+R$
$I^{\prime}=I_{2} \times R^{2}$

Step-3

CurrentinR ${ }_{1}$ branch $=I-I$
CurrentinR ${ }_{2}$ branch $=I-I$
CurrentinR ${ }_{3}$ branch $=I-I^{2}{ }_{3}^{2}$
The direction of the branch current will be in the direction of the greater valuecurrent.

Thevenin'sTheorem:

Thecurrentflowingthroughtheloadresistance R_{1} connectedacrossanytwo terminals A and B of a linear active bilateral network is given by
$I_{L}=\frac{V_{t h}}{R+R_{i t}}={ }_{L} R_{i o c}^{V_{i}+R_{L}}$
Where $V_{\text {th }}=V_{\text {oc }}$ is the open. circuit voltage across A and B terminal when R_{L} is removed.
$R_{i}=R_{t h}$ is the internal resistances of the network as viewed back into the open circuit network from terminals A \& B with all sources replaced by their internal resistances if any.

Explanation:

Step-1forfinding $\mathbf{V}_{\mathbf{o c}}$

Remove R_{L} temporarilytofind V_{oc}.

$I=\frac{E}{R_{1}+R_{2}+r}$
$V_{o c}=I R_{2}$

Step-2finding $R_{\text {th }}$

Removeall the sourcesleaving theirinternal resistances ifany andviewed from open circuit side to find out R_{i} or $R_{t h}$.

$$
R_{i}=\left(R_{1}+r\right) \| R_{2} R=
$$

$$
\frac{\left(R_{1}+r\right) R_{2}}{R_{1}+r+R_{2}}
$$

Step-3

ConnectinternalresistancesandThevenin'svoltageinserieswithload resistance R_{L}.

$$
\begin{aligned}
& \text { Where }_{\text {th }}=\text { theveninresistance } \\
& \mathrm{V}_{\text {th }}=\text { thevenin voltage } \\
& \mathrm{I}_{\mathrm{th}}=\text { thevenin current } \\
& R_{i}=\left(R_{1}+r\right)| | R_{2}
\end{aligned}
$$

Example 01- Applyingthevenintheoremfindthefollowingfromgiven figure
(i) theCurrent in the load resistance R_{L} of 15Ω

Solution:(i)FindingVoc
\rightarrow Remove15』resistanceandfindtheVoltageacross AandB

$\mathrm{V}_{\text {oc }}$ isthevoltageacross 12Ω resister
$\mathrm{V}_{\mathrm{oc}}=\frac{2412 \times}{12+3 \mathrm{~V}}$
(ii) FindingR ${ }_{\text {th }}$
R_{th} iscalculatedfromtheterminalA\&Bintothe network.
The 1 Sresister and 3 Sin are series and parallel

$$
\begin{aligned}
\mathrm{R}_{\mathrm{th}} & =3+1 / / 12 \\
& =\frac{4 \times 12}{16}=3 \Omega
\end{aligned}
$$

(iii) $\mathrm{I}_{\mathrm{th}}==\frac{V O C^{2}}{R_{L}+R} \quad \frac{18}{15+3}=1 \mathrm{~A}$.

Example02:Determinethecurrentin1 Ω resistoracrossABofthenetwork showninfig(a)usingthevenintheorem.
Solution:Thecircuirtcanberedrawnasinfig(b).

fig(a),(b),(c),(d)respectively

Step-1 remove the 1Ω resistor and keeping open circuit .The current source isconverted to the equivalent voltage source as shown in fig (c) Step-02forfindingthe $\mathrm{V}_{\text {th }} \mathrm{we}$ 'llapplyKVLlawinfig(c) then

$$
3-(3+2) x-1=0
$$

$\mathrm{x}=0.4 \mathrm{~A}$
$\mathrm{V}_{\mathrm{th}}=\mathrm{V}_{\mathrm{AB}}=3-3 * 0.4=1.8 \mathrm{~V}$
Step03-forfindingthe $\mathrm{R}_{\text {th }}$, allsourcesaresetbezero $\mathrm{R}_{\mathrm{th}}=2 / / 3=(2 * 3) /(2+3)=1.2 \Omega$
Step04-Thencurrent $\mathrm{I}_{\mathrm{th}}=1.8 /(12.1+1)=0.82 \mathrm{~A}$

Example03: The four arms of a wheatstone bridge have the following resistances .

$$
\mathrm{AB}=100 \Omega, \mathrm{BC}=10 \Omega, \mathrm{CD}=4 \Omega, \mathrm{DA}=50 \Omega . \mathrm{AA} \quad \text { galvanometer } \quad \text { of } 20 \Omega
$$ resistance is connected acrossBD.Usethevenin theorem to compute the current through the galvanometer when the potential difference 10 V ismaintained across AC.

Solution:

step01-Galvanometerisremoved.
step02-findingthe $\mathrm{V}_{\text {th }}$ betweenB\&D.ABCisapotentialdivideronwhicha voltage drop of 10 vtakes place.
PotentialofBw.r.tC $=10 * 10 / 110=0.909 \mathrm{~V}$
Potential of D w.r.t $\mathrm{C}=10 * 4 / 54=.741 \mathrm{~V}$
then,
p.dbetweenB\&Dis $\mathrm{V}_{\text {th }}=0.909-.741=0.168 \mathrm{~V}$

Step03-finding R_{th}
removeallsourcestozerokeepingtheirinternalresistances.

$$
\mathrm{R}_{\mathrm{th}}=\mathrm{R}_{\mathrm{BD}}=10 / / 100+50 / / 4=12.79 \Omega
$$

Step04;
lastly $\mathrm{I}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th}} / \mathrm{R}_{\mathrm{th}}+\mathrm{R}_{\mathrm{L}}=0.168 /(12.79+20)=5 \mathrm{~mA}$

Norton'sTheorem

Statement :In any two terminal active network containing voltage sources and resistances when viewed from its output terminals in equivalent to a constant current source and a parallel resistance. The constant current source is equal to the current which would flow in a short circuit placed across the terminals and parallel resistance is the resistance of the network when viewed from the open circuit side after replacing their internal resistances and removing allthe sources.

OR

In any two terminal active network the current flowing through the load resistance R_{L} is given by

$$
I=\frac{I_{s c} \times R_{i}}{R_{i} \times R_{L}}
$$

Where R_{i} is the internal resistance of the network as viewed from the open ckt side A \& B with all sources being replaced by leaving their internal resistancesif any.
I_{sc} istheshortcktcurrentbetween thetwoterminalsoftheloadresistance when it is shorted

Explanation:

Step-1

A\&BareshortedbyathickcopperwiretofindoutI ${ }_{\text {sc }}$
$I_{s c}=E /\left(R_{1}+r\right)$

Step-2
Removeallthesourceleavingitsinternalresistanceifanyandviewedfrom opencircuitsideAandBintothenetworktofindR R_{i}.

$R_{i}=\left(R_{1}+r\right) \| R_{2}$
$R_{i}=\left(R_{1}+r\right) R_{2} /\left(R_{1}+r+R_{2}\right)$

Step-3

ConnectI ${ }_{\text {sc }} \& \mathrm{R}_{\mathrm{i}}$ inparallelwith R_{L}
$I_{L}=\frac{I_{s c}}{R_{i}+R_{L}}$
Example 01:Usingnorton's theorem find the current that would flow through the resistor R_{2} whenit takes the values of $12 \Omega, 24 \Omega \& 36 \Omega$ respectively in the fig shown below.
Solution:

Step 01 -remove the load resistance by making short circuit. now terminal
ABshort circuited.
Step02-Findingtheshortcircuitcurrent $\mathrm{I}_{\text {sc }}$
Firsthecurrentdueto E_{1} is $=120 / 40=3 \mathrm{~A}$, anddueto E_{2} is $180 / 60=3 \mathrm{~A}$. then
$\mathrm{I}_{\mathrm{sc}}=3+3=6 \mathrm{~A}$
Step03-findingresistance R_{N}
Itiscalculatedbybyopencircuittheloadresistanceandviewedfromopen circuit and into the network and all sources are taken zero.
$\mathrm{R}_{\mathrm{N}}=40 / / 60=(40 * 60) /(40+60)=24 \Omega$
i) whenR $\mathrm{R}_{\mathrm{L}}=12 \Omega, \mathrm{I}_{\mathrm{L}}=6 * 24 /(24+36)=4 \mathrm{~A}$
ii) when $R_{L}=24 \Omega, \mathrm{I}_{\mathrm{L}}=6 / 2=3 \mathrm{~A}$
iii) whenR ${ }_{L}=36 \Omega, \mathrm{I}_{\mathrm{L}}=6 * 24 /(24+36)=2.4 \mathrm{~A}$

MaximumPowerTransferTheorem

Statement :A resistive load will abstractmaximum power from a network when the load resistance is equal to the resistance of the network as viewedfrom the output terminals(Open circuit) with all sources removed leaving their internal resistances if any

Proof:

$$
\begin{aligned}
I= & \\
& +V_{t h R_{i}} \\
& +R_{L}
\end{aligned}
$$

Powerdeliveredtotheload resistance is given by

$$
\begin{aligned}
& P=I^{2} R \\
& \left.=\left(\frac{V}{\left(\frac{V}{R_{i}+R_{L}}\right.}\right)^{2}\right)^{2}
\end{aligned}
$$

$$
=\frac{V^{2} R}{(R+h+R)^{2^{2}}}{ }_{L}
$$

Powerdeliveredtotheloadresistance R_{L} willbemaximum When $\frac{d P_{L}}{}=0$

$$
{ }_{L} V^{2}(R+R)^{2}-V_{L}^{2} R \times 2(R+R)=0{ }_{L}
$$

$$
\Rightarrow V^{2}(R+R)^{2}-2 V^{2} R(R+R)=D_{L}
$$

$$
\Rightarrow V^{V_{h}^{\prime h}(R+R)^{2}=2}=\underset{L}{L} V^{2} R(R+R)
$$

$$
\Rightarrow R_{+}+R_{L}=2 R_{L}
$$

$$
\Rightarrow R_{i}=2 R_{L}-R_{L} \Rightarrow
$$

$$
R_{i}=R_{L}
$$

$$
\left(P_{L}\right) \max =\frac{K_{i}=V_{L}^{2}}{V_{\text {th }}^{2}{ }^{2} R_{L}}
$$

$$
\left(\left.\begin{array}{c}
V^{2} \\
=\frac{\mu R_{R}}{L_{L}}
\end{array} \right\rvert\,\right.
$$

$$
=\frac{V_{h h}^{2}}{4 R_{L}^{2}} \times R_{L}
$$

$$
4 R_{L}^{2}
$$

$$
\left(P_{L}\right) \text { max }=\frac{\text { th }}{} \begin{aligned}
& V^{2} \\
& 4 R_{L}{ }^{2}
\end{aligned}
$$

MILLIMAN'STHEOREM:

According to Millimans Theorem number of sources can be converted into a single source with a internal resistance connected in series to it,if the sources are in parallel connection.
AccordingtotheMilliman'stheoremtheequivalentvoltagesource

$$
E^{\prime}=\frac{\frac{E \times}{1}+\frac{1 \times}{1}+{ }^{1}+E \times}{R_{1}}+\ldots{ }_{2}^{1}+. .
$$

$$
\begin{aligned}
& d{ }^{d R_{L}}{ }^{V^{2} R} \\
& \Rightarrow d R{ }_{L}\left\{\begin{array}{l}
-\left(R+R^{h} R^{L}\right)^{2} \\
V^{2}(R+R)^{2}-V^{2} R \times 2(R+R)
\end{array}\right.
\end{aligned}
$$

```
\(=E_{1} \underline{G}_{1}+E_{2} \underline{G}_{2} \underline{+E_{3}} \underline{G}_{\underline{G_{2}}}^{\underline{2}} \underline{\ldots}\)
    \(G_{1}+G_{2}+G_{3}+\ldots\)
\(E_{1}+{ }_{2}+E_{3}+\ldots\)
\(\overline{R_{1}} \quad \overline{R_{2}} \quad \stackrel{.}{R_{3}}\)
    \(G_{1}+G_{2}+G_{3}+\ldots\)
\(=\underline{I_{1}}+\underline{I_{2}} \underline{+} \underline{I_{3}}+\ldots\)
    \(G_{1}+G_{2}+G_{3}+\ldots\)
```

Example - Calculate the current across 5Ω resistor by using Milliman's Thm.
Only

Solution:-Given,

$$
\begin{array}{lcr}
\mathrm{R}_{1}=2 \Omega, & \mathrm{R}_{2}=6 \Omega, & \mathrm{R}_{3}=4 \Omega, \\
\mathrm{E}_{1}=6 \mathrm{v}, & \mathrm{R}_{2}=5 \Omega \\
\mathrm{E}_{2}=12 \mathrm{v} & &
\end{array}
$$

theresistance R_{2} isnotcalculatedbecause thereisnovoltagesource

$$
=\frac{\frac{{ }^{6}}{2}+0+{ }^{12} \frac{1}{4}}{\frac{1}{2}+{ }^{1} \frac{1}{6} \cdot \overline{4}}
$$

$$
=\frac{3+0+36+}{\frac{2+3}{1}}=\frac{6}{11} \times 2=6.54 v
$$

12
$R_{1}=\frac{1}{\frac{1_{+}+1}{R_{1}+\frac{1}{R_{2}}} \frac{R_{3}}{R_{3}}}=\frac{1}{\frac{11}{12}}=\frac{1.09 .2}{11}$
$I_{\bar{L}} \frac{V o c}{1.09+5}=\frac{6.54}{1.09+5}=1.07 \mathrm{Amp}$.

COMPENSATIONTHEOREM:

Statement:

It's states that in a circuit any resistance ' R ' in a branch of network in which a current ' I ' is flowing can be replaced. For the purposes of calculations by a voltagesource =-IR

If the resistance of any branch of network is changed from R to $R+4 R$ where the currentflowing originaly isi. The change current at any other place in the network may be calculated by assuming that one e.m.f $-I \Delta R$ has been injected into the modified branch. While all other sources have their e.m.f. suppressed and ' R ' represented by their internal resistances only.

Exp-(01)

Calculatethevaluesofnewcurrentsinthenetworkillustrated
,whenthe resistor R_{3} is increased by 30%.
Solution:-Inthegivencircuit,thevaluesofvariousbranchcurrentsare

$$
\begin{aligned}
& I_{1}=75 /(5+10)=5 \mathrm{~A} \\
& I_{3}=I_{2} \quad=\frac{5 \times 20}{40}=2.5 \mathrm{Amp}
\end{aligned}
$$

NowthevalueofR ${ }_{3}$,whenitincrease 30%
$R_{3}=20+(20 \times 0.3)=26 \Omega$
$I R=26-20=6 \Omega$
$V=-I \Delta R$

$=-2.5 \times 6$
$\begin{aligned} & =-15 \mathrm{~V} \\ & 5 \| 20 \Omega=\frac{5 \times 20}{5+20}= \\ & 25\end{aligned}=4 \Omega$
$I_{3}=\begin{aligned} & 15 \\ & { }^{15}=0.5 \mathrm{Amp} \\ & 4+26\end{aligned}$
$I_{2}^{=0.5 \times 5}=0.1 \mathrm{Amp}$
\times

$$
\begin{aligned}
& I_{1} 0.2 .5^{25}=0.4 \mathrm{Amp} \\
& 1 \\
& I_{1}=25 \\
& I_{2}^{\prime \prime}=5-0.4=4.6 \mathrm{Amp} \\
& I_{3}^{\prime \prime}=2.1+2.5=2.6 \mathrm{Amp} \\
& 2.5=2 \mathrm{Amp}
\end{aligned}
$$

RECIPROCITYTHEOREM:

Statement:

It states that in any bilateral network, if a source of e.m.f ' E ' in any branch produces a current ' I ' any other branch. Then the same e.m.f ' E ' acting in the second branch would produce the same current ' I ' in the $1^{\text {st }}$ branch.

Step-1First ammeterB reads thecurrent in thisbranchdue tothe36v source, the current is given by
$4 \| 12=\frac{4 \times 12=3 \Omega}{16}$
$R=2+4+3=9 \Omega$
$I=\frac{36}{9}=4 \mathrm{Amp}$
$I_{\overline{\bar{B}}} \frac{4 \times 12}{12+3+1}=\frac{48}{16}=3 \mathrm{Amp}$
$I_{B}=$ currentthrough 1Ω resister

Step - (III) Then interchanging the sources and measuring the current
$6 \Omega\left|\left\lvert\, 12 \Omega=\frac{{ }^{6 \times 12}=}{6+12}=4 \Omega\right.\right.$
$R=4+3+1=8 \Omega$

$I=\frac{36}{8}=4.5 \mathrm{Amp}, I={ }_{A}^{4.5 \times 12} \frac{=3 \mathrm{Amp}}{6+2}$ Transferresistance $={ }^{V}={ }^{36}=12 \frac{\Omega}{I} \quad \frac{}{3}$

COUPLEDCIRCUITS

Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe magnetic circuit.
Therearetwotypesofinduced emf.
(1) StaticallyInducedemf.
(2) DynamicallyInducedemf.

Faraday'sLawsofElectro-Magnetic :
Introduction $\rightarrow \quad$ FirstLaw: \rightarrow
Whenever the magnetic flux linked with a circuit changes, an emf is induced in it.

OR

Wheneveraconductorcutsmagneticfluxanemfisinducedin it.

SecondLaw: \rightarrow

It states that the magnitude of induced emf is equal to the rate of change of flux linkages.

OR

Theemfinducedisdirectlyproportionaltotherateofchangeoffluxandnumber of turns
Mathematically:
ex ${ }^{\underline{d}} \phi$
$d t$
ex N
Or $\quad \mathrm{e}=-N{ }^{\underline{d}} d t$

$$
\begin{array}{ll}
\text { Where } & \\
& \mathrm{e}=\text { inducedemf } \\
& \mathrm{N}=\text { No.ofturns } \phi \\
& =\text { flux }
\end{array}
$$

'-ve'signisduetoLenz's Law

Inductance: \rightarrow

Itisdefinedasthepropertyofthesubstancewhichopposesanychangein Current \& flux.

Unit: \rightarrow Henry

Fleming'sRightHandRule: \rightarrow

It states that "hold your right hand with fore-finger, middle finger and thumb at right angles to each other. If the fore-finger represents the direction of field, thumbrepresents the directionofmotionofthe conductor, then themiddle finger represents the direction of induced emf."

Lenz'sLaw: \rightarrow

It states that electromagnetically induced current always flows in such a direction that the action of magnetic field set up by it tends to oppose the vary cause which produces it.

OR

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposes the change of magnetic flux.
(2) DynamicallyInducedemf: \rightarrow

In this case the field is stationary and the conductors are rotating in an uniform magnetic field at flux density ' B " $\mathrm{Wb} / \mathrm{mt}^{2}$ and the conductor is lying perpendicular to the magnetic field. Let ' l ' is the length of the conductor and it moves a distance of ' dx ' nt in time ' dt ' second.

Theareasweptbytheconductor $=l . d x$
Hencethefluxcut= $l d x . B$
Changeinfluxintime'dt'second $=\quad \frac{B l d x}{d t}$

$$
E=\boldsymbol{B} \boldsymbol{l} \boldsymbol{v}
$$

Where $V={ }^{d x}$
$\overline{d t}$
Iftheconductorismakinganangle ' θ ' withthemagneticfield,then

$$
e=B l v \sin \theta
$$

(1) StaticallyInducedemf: \rightarrow

Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by increasing or decreasing.

Itisdividedintotwotypes.
(i) Self-inducedemf.
(ii) Mutually-inducedemf.
(i) Self-induced emf: \rightarrow It is defined as the emf induced in a coil due to thechange of its ownflux linked with the coil.

Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsown turn will also change which will produce an emf is called self-induced emf.

Self-Inductance: \rightarrow

Itisdefinedasthepropertyofthecoilduetowhichitopposesanychange (increase or decrease) of current or flux through it.

Co-efficientofSelf-Inductance(L): \rightarrow

Itisdefinedastheratioofweberturnsperampereofcurrentinthecoil.

OR

Itistheratiooffluxlinkedperampereofcurrentinthe coil
1stMethodfor'L': \rightarrow

$$
\begin{gathered}
L=\underline{N}^{\phi} \\
I
\end{gathered}
$$

Where $\mathrm{L}=$ Co-efficientofself-induction N
$=$ Number of turns
$\phi=$ flux
I=Current

2ndMethodforL: \rightarrow

Weknow that

$$
\begin{aligned}
& L=-\frac{N}{\phi} \\
& I \\
& \Rightarrow L I=N \phi \\
& \Rightarrow-L I=-N \phi \\
& \Rightarrow-L I=\frac{d I}{d t}=-N^{d \phi} \overline{d t} \\
& \Rightarrow-L^{d I} \frac{I I}{d t}=-N^{d \phi} \overline{d t}
\end{aligned}
$$

$$
\Rightarrow L \frac{d I}{d t}=-e_{L}
$$

$$
\Rightarrow L=\frac{-e_{L}}{\frac{d I}{d t}}
$$

WhereL=Inductance
$e_{L}^{e=-N} \underset{d t}{d}$ is ${ }_{2}$ nownasself-inducedemf.
When $\frac{d I}{d t}=1 \mathrm{amp} / \mathrm{sec}$.
$\mathrm{e}=1$ volt
L=1Henry

Acoilissaidtobea self-inductanceof1 Henryif1 voltisinducedinit.
Whenthecurrentthroughitchangesattherateof $1 \mathrm{amp} / \mathrm{sec}$.

3rdMethodforL: \rightarrow

$L=\frac{M_{o} M_{r} A N^{2}}{l}$
WhereA=Areaofx-sectionofthecoil $\mathrm{N}=$
Number of turns
$L=$ Lengthofthecoil
(ii) MutuallyInducedemf: \rightarrow

It is defined as the emf induced in one coil due to change in current in other coil. Consider two coils 'A' and 'B' lying close to eachother. An emfwill be induced in coil ' B ' due to change of current in coil ' A ' by changing the position of the rheostat.

MutualInductance: \rightarrow

Itisdefinedastheemfinducedincoil' B 'duetochangeofcurrentincoil ' A ' is the ratio of flux linkage in coil ' B ' to 1 amp . Of current in coil ' A '.
Co-efficientofMutualInductance(M)
Coefficient of mutual inductance between the two coils is defined as the weber-turns in one coil due to one ampere current in the other.

1stMethodfor'M': \rightarrow

$M=\frac{N_{21} \phi}{I_{1}}$
$\mathrm{N}_{2}=$ Number of turns
$\mathrm{M}=$ MutualInductance ϕ
${ }_{1}=$ flux linkage
$\mathrm{I}_{1}=$ Currentin ampere

2ndMethodforM: \rightarrow

Weknow that

$$
\begin{array}{r}
M=\frac{N_{21} \phi}{I_{1}} \\
\Rightarrow M I_{1}=N_{2} \phi_{1} \\
\Rightarrow-M I_{1}=N_{2} \phi_{1}
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow-M \frac{d I_{1}=-N}{d t} \quad{ }^{2} \frac{d \Phi}{d t} \\
& \Rightarrow-M \frac{d I_{1}}{d t} \quad M
\end{aligned}
$$

Where $\quad e_{M}=-N_{2} \frac{d_{1} \text { isknownasmutuallyinducedemf. }}{d t}$.
$e_{M}=-1$ volt
ThenM=1 Henry
Acoil issaidtobea mutualinductanceof1Henrywhen1 voltis
induced when the currentof $1 \mathrm{amp} / \mathrm{sec}$. is changed in its neighbouring coil. 3rdMethodforM: \rightarrow
$M=\frac{\underline{M}_{o} \underline{M_{r}} \underline{A N_{1}} \underline{N_{2}} \underline{N_{2}}}{l}$

Co-efficientofCoupling:

Considertwomagneticallycoupledcoilshaving N_{1} andN N_{2} turns respectively. Their individual co-efficient of self-inductances are

The flux ϕ_{1} producedincoil' A 'duetoacurrentofI ${ }_{1}$ ampereis

$\phi_{1}=\underline{M}_{o} \underline{M_{1}} \underline{A N_{1} \underline{I}_{1}}$
Supposeafractionofthisfluxi.e. $\mathrm{K}_{1} \phi_{1}$ islinkedwithcoil'B'

$$
\begin{align*}
& \text { Then } M=\frac{K_{1} \phi_{1} \times N=}{I_{1}} \tag{2}\\
& \text { arlytheflux } \phi_{2} \text { pro } \\
& \phi_{2}=\underline{M_{1}} \underline{M_{2}} \underline{A N_{2} \underline{I}_{2}} \\
& l
\end{align*}
$$

Supposeafractionofthisfluxi.e. K_{22} isliŋkedwithcoil' A ’
Then $M=\frac{K_{2} \phi_{2} \times N=K_{2} N_{21} N_{1} \ldots-\cdots I_{1}}{I_{2}}$
Multiplyingequation(1)\&(2)

$$
M^{2}=\frac{2^{12} K K_{2} 2_{2}^{2} \times N_{1}^{2}}{T / M M A}
$$

$$
=K\left(\frac{\begin{array}{c}
l M M A \\
0
\end{array}}{\substack{2 M M A N^{2} \\
o \\
l}} \begin{array}{l}
1 \\
l
\end{array}\right)\left(\begin{array}{lll}
\left(M M A N^{2}\right. \\
o & i & 2 \\
l
\end{array}\right)
$$

$M^{2}=K^{2} . L . L \quad\left[\mathrm{Q} K_{1}=K_{2}=K \quad\right]$

$$
\begin{aligned}
& K^{2}=\frac{M^{2} .}{L_{1} \cdot L_{2}} \\
& \Rightarrow K=\sqrt{\frac{M \cdot}{L_{1} \cdot L_{2}}}
\end{aligned}
$$

Where' K 'isknownastheco-efficientofcoupling.
Co-efficientofcouplingisdefinedastheratioofmutualinductance between two coils to the square root of their self- inductances.

InductancesInSeries(Additive): \rightarrow

Fluxes are in the same durection
Let $\quad \mathrm{M}=\mathrm{Co}$-efficientofmutualinductance
$\mathrm{L}_{1}=$ Co-efficient of self-inductance offirst coil.
$\mathrm{L}_{2}=$ Co-efficientofself-inductanceofsecondcoil.
EMFinducedinfirstcoilduetoself-inductance

$$
e_{L_{1}}=-L_{1} \frac{d I}{d t}
$$

Mutuallyinducedemfinfirstcoil

$$
e_{M_{1}}=-M^{d I} \frac{}{d t}
$$

EMFinducedinsecondcoilduetoselfinduction

$$
e_{L_{2}}=-L \quad \frac{d I}{2} d t
$$

Mutuallyinducedemfinsecondcoil

$$
e_{M_{2}}=-M^{d I} \frac{}{d t}
$$

Totalinducedemf

$$
e=e_{L_{1}}+e_{L_{2}}+e_{M_{1}}+e_{M_{2}}
$$

If f^{\prime} 'istheequivalentinductance, then

$$
\begin{aligned}
& -L^{d I} \frac{}{d t}=-L \quad \frac{d I}{1} d t-M{ }^{d I}-L_{d t} \quad{ }^{2} d t-M^{d I} \quad \frac{d}{d t} \\
& \left.\Rightarrow-L \xrightarrow{d I}=-\quad d I^{L-L-2 M}\right)_{2} \\
& \Rightarrow d t d t
\end{aligned}
$$

InductancesInSeries(Substnactive): \rightarrow

Let $\mathrm{M}=$ Co-efficientofmutualinductance
$\mathrm{L}_{1}=$ Co-efficientofself-inductanceoffirstcoil
$\mathrm{L}_{2}=$ Co-efficientofself-inductanceofsecondcoil Emf induced in first coil due to self induction,

$$
e_{L_{1}}=-L^{d I} d t
$$

Mutuallyinduced $d_{d} \mathrm{~m}^{\operatorname{mfinf}_{d}} \mathrm{ir}_{1}$ stcoil

Emfinducedinsecondcoilduetoself-induction

$$
e_{L_{2}}=-L_{2}^{d I} \overline{d t}
$$

Mutuallyinduced $\notin m$ fins \notin eond

$$
\begin{aligned}
& e=-M=M \\
& M_{M_{2}} \quad(\quad-1) \quad \overline{d t}
\end{aligned}
$$

Totalinducedemf
$\begin{array}{cccc}e=e \\ \text { Then- } L^{\underline{d I}}=-L & L_{1} \\ =-L & & L_{M_{1}} & e e \\ M_{2} & d I\end{array}$

$$
\begin{aligned}
& d t \quad{ }^{1} d t--L_{2} d t+M \quad \frac{d I}{d t}+M \frac{d I}{d t} \\
& \Rightarrow-L \underline{=-} d I(\underline{L+L-2 M}) \\
& \Rightarrow L=L+L-2 M
\end{aligned}
$$

InductancesInParallel: \rightarrow

Lettwoinductancesof $L_{1} \& L_{2}$ areconnectedinparallel Lettheco-efficentofmutualinductancebetweenthemisM.

$$
I=i_{1}+i_{2}
$$

$$
\begin{align*}
& \frac{d I_{-}}{d t} \frac{d i_{1}}{d t} d i_{2} \tag{1}\\
& e=L \frac{d i_{1}}{1} d t M^{d i_{2}} d t \\
& =L^{\frac{d i_{2}}{2} d t} M^{d i_{1}} d t
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow(L-M) \underset{1}{d t} \underset{2}{d l_{1}}=(L-M) \quad \frac{d i_{2}}{d t} \\
& \Rightarrow \frac{d i_{1}}{d t}=\frac{\left(L_{2}-M\right) d i_{2}}{\left(L_{1}-M\right) d t} \tag{2}\\
& \xrightarrow{d I}=\frac{d i_{1}}{d t} d i_{2} d t \\
& =\frac{\left(L_{2}-M\right) d i_{2}+d i_{2}}{\left(L_{1}-M\right) d t} d t \\
& \left.\underline{d t}=\stackrel{d I \Rightarrow}{\Rightarrow} \begin{array}{l}
L_{2}-M \\
\frac{L-M}{1}+1
\end{array}\right) d t \tag{3}
\end{align*}
$$

If ${ }^{6}$ ''istheequivalentinductance

$$
\begin{align*}
& e=L^{d i} \quad \frac{d t}{d t}=L_{1} \quad \frac{d i_{1}}{d t}+M \quad \frac{d i_{2}}{d t} \\
& L \underset{=L}{d i}{ }_{1}+M t i^{d i_{2} d t} \frac{}{d t} \tag{4}
\end{align*}
$$

Substitutingthevalueof ${ }^{d i_{1}}$

$$
\begin{equation*}
\frac{d i}{d t}=\frac{1}{L}\left[\sum^{L_{2}-L_{2}+M}{ }^{1 L_{2}-}{ }^{L_{1}-M} \quad\right] \overline{d t} \tag{5}
\end{equation*}
$$

Equatingequation(3)\&(5)

$$
\begin{aligned}
& \left\lceil\gamma \underset{L}{L_{2}-M}\right)_{+1 d j_{2}=1}^{d t} \quad\left[L_{1}\left(L_{2}-M\right)+M \quad\right] d i_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow \begin{array}{cc}
2^{2} & 1 \\
L+L-2 M & 1-L \\
\left.L+L-M^{2}\right\rceil & L_{1}-M
\end{array}\right] \\
& \Rightarrow \frac{1}{L_{1}-M}=\bar{L}\left\lfloor\frac{12}{L_{1}-M}\right) \\
& \left.\Rightarrow L+L-\underset{1}{2 M}=\underset{L}{L}-\frac{M F^{2}}{L}\right]_{12} \\
& \Rightarrow L=\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}-2 M}
\end{aligned}
$$

Whenmutualfieldassist.

$$
L=\begin{gathered}
L L-M^{2} \\
L=\frac{12}{1+}+L_{2}+2 M
\end{gathered}
$$

Whenmutualfieldopposes.

CONDUCTIVELYCOUPLEDEQUIVALENTCIRCUITS

$\Rightarrow \quad$ The Loop equation are fromfig(a)

$$
\begin{aligned}
& \underset{1}{V=L} \stackrel{d i}{{ }_{1}}+M d{ }^{d i_{2}} \\
& \underset{2}{V=L \frac{d i_{2}}{2} M M}{ }_{2}^{d} d i_{1} \\
& d t
\end{aligned}
$$

$\Rightarrow \quad$ Theloopequationarefromfig(b)

$$
V_{1}=\left(L_{1}-\quad M\right) \frac{d i_{1}}{d t}+M \quad \frac{d}{d t}\left(i_{1}+i_{2}\right)
$$

$$
V_{2}=\left(L_{2_{-}} \quad M\right) \frac{d i_{2}}{d t}+M \quad \frac{d}{d t}\left(i_{1}+i_{2}\right)
$$

Which,onsimplificationbecome

$$
\begin{array}{ll}
V=L \frac{d i_{1}}{1} d M \frac{d i_{2}}{d t} & \\
1 & d t \\
V=L \frac{d i_{2}}{2}+M M^{d i_{1}} & \\
2 & d t
\end{array}
$$

Socalledconductivelyequivalentofthemagneticcircuit. represent $\mathrm{Z}_{\mathrm{A}}=\mathrm{L}_{1}-\mathrm{M}$.

$$
\mathrm{Z}_{\mathrm{B}}=\left(\mathrm{L}_{2}-\mathrm{M}\right) \mathrm{and}_{\mathrm{C}}=\mathrm{M}
$$

In case M is + ve and both the currents then $\mathrm{Z}_{\mathrm{A}}=\mathrm{L}_{1}-\mathrm{M}, \mathrm{Z}_{\mathrm{B}}=\mathrm{L}_{2}-\mathrm{Mand} \mathrm{Z}_{\mathrm{C}}=\mathrm{M}$, also, ifis - ve and currents in the common branch opposite to each other $Z_{A}=$ $\mathrm{L}_{1}+\mathrm{M}, \mathrm{Z}_{\mathrm{B}}=\mathrm{L}_{2}+$ Mand $\mathrm{Z}_{\mathrm{C}}=-\mathrm{M}$.
Similarly, if M is -ve but the two currents in the common branch are additive,then also.

$$
\mathrm{Z}_{\mathrm{A}}=\mathrm{L}_{1}+\mathrm{M}, \mathrm{Z}_{\mathrm{B}}=\mathrm{L}_{2}+\mathrm{MandZ}_{\mathrm{C}}=-\mathrm{M} .
$$

Further Z_{A}, Z_{B} and Z_{C} may also be assumed to be the T equivalent of the circuit.

Exp.-01:

Two coupled cols have self inductances $\mathrm{L}_{1}=10 \times 10^{-3} \mathrm{H}$ and $\mathrm{L}_{2}=20 \times 10^{-3} \mathrm{H}$. The coefficient of coupling (K) being 0.75 in the air, find voltage in the second coil and the flux of first coil provided the second coils has 500 turns and the circuit current is given by $\mathrm{i}_{1}=2 \sin 314.1 \mathrm{~A}$.

Solution:

$$
\begin{aligned}
& M=K \sqrt{L_{1} L_{2}} \\
& M=0.751010^{-3} \times \times 2010^{-3} \\
& \Rightarrow M=10.6 \times 10^{-3} \mathrm{H}
\end{aligned}
$$

Thevoltageinducedinsecondcoil is

$$
\begin{aligned}
& v_{2}=M \frac{d i_{1}}{d t}=M^{d i} \overline{d t} \\
& =10.6 \times 10^{-3} \frac{d t}{d t}(2 \sin 314 t) \\
& =10.6 \times 10^{-3} \times 2 \times 314 \cos 314 t .
\end{aligned}
$$

ThemagneticCKtbeinglinear,

$$
\begin{aligned}
M & =\frac{N_{22}}{}=00 \times(K \phi) \\
i_{1} & i_{1} \\
& =\frac{M}{500 \times K} \times i=1 \frac{10.6 \times 10^{-3}}{500 \times 0.75} \times 2 \sin 314 t \\
& =5.66 \times 10^{-5} \sin 314 \mathrm{t}
\end{aligned}
$$

$\phi_{1}=5.66 \times 10^{-5} \operatorname{sins} 314 t$.

Exp. 02

Find the total inductance of the three series connected coupled coils. Where the self and mutual inductances are
$\mathrm{L}_{1}=1 \mathrm{H}, \mathrm{L}_{2}=2 \mathrm{H}, \mathrm{L}_{3}=5 \mathrm{H}$
$\mathrm{M}_{12}=0.5 \mathrm{H}, \mathrm{M}_{23}=1 \mathrm{H}, \mathrm{M}_{13}=1 \mathrm{H}$

Solution:

$$
\begin{aligned}
\mathrm{L}_{\mathrm{A}} & =\mathrm{L}_{1}+\mathrm{M}_{12}+\mathrm{M}_{13} \\
& =1+20.5+1 \\
& =2.5 \mathrm{H} \\
\mathrm{~L}_{\mathrm{B}} & =\mathrm{L}_{2}+\mathrm{M}_{23}+\mathrm{M}_{12} \\
& =2+1+0.5 \\
& =3.5 \mathrm{H} \\
\mathrm{~L}_{\mathrm{C}} & =\mathrm{L}_{3}+\mathrm{M}_{23}+\mathrm{M}_{13} \\
& =5+1+1 \\
& =7 \mathrm{H}
\end{aligned}
$$

Total inductances are

$$
\begin{aligned}
\mathrm{L}_{\mathrm{ea}} & =\mathrm{L}_{\mathrm{A}}+\mathrm{L}_{\mathrm{B}}+\mathrm{L}_{\mathrm{c}} \\
& =2.5+3.5+7 \\
& =13 \mathrm{H} \text { (Ans) }
\end{aligned}
$$

Example03:

Two identical 750 turn coils A and B lie in parallel planes. A current changing at the rate of $1500 \mathrm{~A} / \mathrm{s}$ in A induces an emf of 11.25 V in B . Calculate the mutual inductance of the arrangement .If the self inductance of each coil is 15 mH , calculate the flux produced in coil A per ampere and the percentage of this flux which links the turns of B.
Solution:Weknowthat

$$
\begin{aligned}
& \varepsilon_{M}=\frac{M d I_{1}}{d t} \\
& M={ }^{\theta_{\mathrm{M}}} / d I_{1 /}=\frac{11.25}{1500}=7.5 \mathrm{mH}
\end{aligned}
$$

now,
$L_{1}=\frac{N_{1} \varphi_{1}}{I_{1}}=\frac{\varphi_{1}}{I_{1}}=\frac{E_{1}}{N_{1}}=15 * \frac{10^{-3}}{150}=2 * 10^{-5} \mathrm{~Wb} / \mathrm{A}$
$k=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{7.5 * 10^{-8}}{15 * 10^{-3}}=0.5=50 \%$

DefinitionofA.C.terms:-

Cycle:Itisonecompletesetof+veand-vevaluesofalternatingquality spread over 360° or 2 1 radan.
TimePeriod:Itisdefinedasthetimerequiredtocompleteonecycle.
Frequency:Itisdefinedasthereciprocaloftimeperiod.i.e. $\mathrm{f}=1 / \mathrm{T}$
Or

Itisdefinedasthenumberofcyclescompletedpersecond.
Amplitude :It is defined as the maximum value of either + ve half cycle or -ve half cycle.
Phase:Itisdefinedastheangulardisplacementbetweentwohavesiszero.

OR

Two alternating quantity are inphase when each pass through their zero value at the same instant and also attain their maximum value at the same instant in a given cycle.

$$
\begin{aligned}
& V=V_{m} \sin w t i \\
& =I_{m} \sin w t
\end{aligned}
$$

PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwo alternating quantities.

OR
If the angular displacement between two waves are not zero, then that is known as phase difference. i.e. at a particular time they attain unequal distance.

Two quantities are out of phase if they reach their maximum value or minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween them.

Here $V=V_{m} \sin w t$

$$
i=I_{m} \sin (w t-\phi)
$$

Inthiscasecurrentlagsvoltagebyanangle' ϕ '.

PhasorDiagram:

GenerationofAlternatingemf:-

Consider a rectangular coil of ' N " turns, area of cross-section is ' A ' $n t^{2}$ is placed
x -axis in an uniform magnetic field of maximum flux density $B m$ web/nt ${ }^{2}$. The coil is rotating in the magnetic field with a velocity of w radian / second. Attime $\mathrm{t}=0$, the coil is in x -axis. After interval of time ' dt ' second the coil make rotating in anti-clockwise direction and makes an angle ' θ ' with x-direction. The perpendicular component of the magnetic field is $\phi=\phi n$ cos $w t$

AccordingtoFaraday'sLawsofelectro-magneticInduction

$$
\begin{aligned}
& e=-N^{d p^{2}} \\
&=-N\left(\quad d^{d t} \phi_{m} \cos w t\right) \\
&= \quad d t\left(-\phi_{m} w \cos w t\right) \\
&= N w \phi_{m} \sin w t \\
&= 2 \pi f N \phi_{m} \sin w t(\mathrm{Q} w=2 \pi f) \\
&= 2 \pi f N B_{m} A \sin w t \\
& e=E_{m} \sin w t
\end{aligned}
$$

Where

$$
E_{m}=2 \pi j N B_{m} A
$$

$\mathrm{f} \rightarrow$ frequencyin Hz

$$
\mathrm{B}_{\mathrm{m}} \rightarrow \text { MaximumfluxdensityinWb/ } \mathrm{mt}^{2}
$$

Nowwhen θ orwt $=90^{\circ} \mathrm{e}=$

$$
\mathrm{E}_{\mathrm{m}}
$$

i.e. $\quad E_{m}=2 \pi \mathrm{fNB}_{\mathrm{m}} \mathrm{A}$

RootMeanSquare(R.M.S)Value: \rightarrow

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which when flowing through a given circuit for a given time produces same heat as produced by the alternating current when flowing through the same circuit for the same time.

Sinuscdialalternatingcurrentis i
$=I_{m} \sin w t=I_{m} \sin \theta$
Themeanofsquaresoftheinstantaneousvaluesofcurrentoverone completecycle

$$
=\int_{0}^{2 \pi} \frac{i^{2} \cdot d \theta}{(2 \pi-0)}
$$

Thesquarerootofthisvalueis

$$
\begin{aligned}
& =\sqrt{\int_{0}^{2 \pi} \frac{d \theta}{2 \pi}} \\
& =\sqrt{\int_{0}^{2 \pi} \frac{I \sin \theta)^{2}}{2 \pi}} d \theta
\end{aligned}
$$

AverageValue: \rightarrow

The average value of an alternating current is expressed by that steady current (d.c.) which transfers across any circuit the same charge as it transferred by that alternating current during the sae time.

The equation ofthealternating currentisi $=I_{m} \sin \theta$

$$
\text { Hence, } I_{a v}=0.637 I_{m}
$$

Theaveragevalueoveracompletecycleiszero

$$
\begin{aligned}
& I_{a v}=\int_{0}^{\pi i} \frac{d \theta}{(\pi-0)} \\
& =\int_{0}^{\pi} \frac{I_{m} \cdot \sin \theta}{\pi} d \theta=\frac{I m}{\pi_{0}} \operatorname{sij} \theta \cdot d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{I_{m}}{\pi}[1-0(-1)] \\
& I_{a v}=\frac{2 I_{m}}{\pi} \\
& I_{a v}=\frac{2 \times \text { MaximumCurrent }}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{I^{2}}{2 \pi}} \int_{0}^{\pi} \sin ^{2} . \theta \theta \\
& =\sqrt{\frac{I_{m}^{22}}{2 \pi} \int_{0}^{\pi}\left(\frac{1-\cos 2 \theta}{2}\right)} d \theta \\
& =\sqrt{\frac{I_{m}^{22}}{4 \pi} \int_{0}^{\pi}(1-\cos 2 \theta)} d \theta \\
& =\sqrt{\frac{I_{m}^{2}}{4 \pi}}\left[\frac{\theta-\sin 2 \theta}{2}\right]_{0}^{2 \pi} \\
& =\sqrt{\frac{I^{22}}{4 \pi}} \int_{0}^{\pi}\left(2 \pi-\frac{\sin 4 \pi}{2}\right) d \theta \\
& =\sqrt{\frac{\underline{I}_{\underline{m}}}{4 \pi} \int_{0}^{22}(2 \pi-0)} \\
& =\sqrt{\frac{\underline{m}}{2}}=\frac{I_{m}}{\sqrt{2}} \\
& I_{r . m . s}=\frac{I_{m}}{\sqrt{2}}=0.707 I
\end{aligned}
$$

Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of maximum value to r.m.s value.

$$
\text { Ka }=\frac{\text { MaximumValue }}{\text { R.M.S.Value }}=I_{m}=\frac{}{\frac{I_{m}}{\sqrt{2}}} \quad \sqrt{2}=1.414
$$

Formfactor:-Itisdefinedas theratioofr.m.svaluetoaveragevalue.
$K f=\frac{\text { r.m.s. Value }}{\text { Average.Value }}=\frac{0.707 I_{m}}{0.637 I_{m}}=\sqrt{2}=1.414$
$K f=1.11$

PhasororVectorRepresentationofAlternatingQuantity: \rightarrow

An alternating current or voltage, (quantity) in a vector quantity whichhas magnitude as well as direction. Let the alternating value of current be represented by theequation $e=E_{m}$ Sin wt. The projection of E_{m} on Y-axis at any instant gives the instantaneous value of alternating current. Since the instantaneous values are continuously changing, so they are represented by a rotating vector or phasor. A phasor is a vector rotating at a constant angular velocity

$$
\begin{aligned}
& \text { At } t_{1}, e_{1}=E_{m} \sin w t_{1} \\
& \text { At } t_{2}, e_{2}=E_{m} \sin w t_{2}
\end{aligned}
$$

AdditionoftwoalternatingCurrent: \rightarrow

$$
\begin{aligned}
& \text { Let } e_{1}=E_{m} \sin w t \\
& \qquad e_{2}=E_{m} \sin (w t-\phi)
\end{aligned}
$$

The sum of two sine waves of thesame frequency is another sine wave of samefrequency but of a different maximum value and Phase.

$$
e=\sqrt{e_{1}^{2}+e^{2}+2 e e c q s} \quad \phi
$$

PhasorAlgebra: \rightarrow

Avectorquantitycanbeexpressedintermsof
(i) RectangularorCartesianform
(ii) Trigonometricform
(iii) Exponentialform
(iv) Polarform

$$
\begin{aligned}
E & =a+j b \\
& =E(\cos (\theta+j \sin \theta)
\end{aligned}
$$

$E \sin \theta$

Where $\mathrm{a}=\mathrm{E} \cos \theta$ is the active part
$\mathrm{b}=\mathrm{E} \sin \theta$ isthereactivepart
$\theta=\tan ^{-1} b(a)=$ Phaseangle
$j \sqrt{ }$
$=-1\left(90^{\circ}\right) j^{2}=-$
$1\left(180^{\circ}\right)$
$j^{3}=-j\left(270^{\circ}\right)$
$j^{4}=1\left(360^{\circ}\right)$
(i) Rectangularfor:-

$E=a \not j b$
$\tan ()=b / a$
(ii) Trigonometricform:-
$E=E(\cos \theta) j \sin \theta)$
(iii) Exponentialform:-

$$
E=E e^{\underline{I}_{\theta}}
$$

(iv) Polarform:-

$$
E=E / \pm e \quad\left(E=\sqrt{a^{2}+b^{2}}\right)
$$

AdditionorSubtration:-

$$
\begin{aligned}
& E_{1}=a_{1}+j b_{1} E_{2} \\
&=a_{2}+j b_{2} \\
& E_{1} \pm E_{2}=\left(a_{1}+a_{2}\right) \pm\left(b_{1}+b_{2}\right. \\
& \phi=\tan \left(\frac{a+a}{1}\right. \\
&\left(\frac{a+a}{1}\right)
\end{aligned}
$$

Multiplication:-

$$
\begin{aligned}
E_{1} \times E_{2} & =\left(a_{1}+j a_{1}\right) \pm\left(a_{1}+j b_{2}\right) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}\right)+j\left(a_{1} a_{2}+b_{1} b_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\left.\phi=\tan \left(\frac{-1\left(a_{1} b_{2}+b_{1} a_{2}\right) \mid}{12} \frac{a a-b b}{12}\right)^{12}\right) \\
E_{1}=E_{1} \angle \theta_{1} \\
E_{2}=E_{2} \angle \theta_{2} \\
\mathrm{E}_{1} \times \mathrm{E}_{2}=\mathrm{E}_{1} \mathrm{E}_{2} \quad \angle \phi_{1}+\phi_{2}
\end{gathered}
$$

Division:-

$$
\begin{aligned}
& E_{1}=E_{1} \angle \theta_{1} \\
& E_{2}=E_{2} \angle \theta_{2} \\
& \frac{E_{1}}{E_{2}}=\underline{E}_{1} \angle \theta_{1}=\frac{E_{1}}{E_{2} \angle \theta_{2}} \angle \theta_{1}-\theta_{2}
\end{aligned}
$$

A.C.throughPureResistance: \rightarrow

LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied voltage

Let' I 'istheinstantaneouscurrent.
Here $e=i R$

$$
\begin{align*}
& \Rightarrow i=e / R \\
& \quad i=E_{m} \sin w t / R \tag{2}
\end{align*}
$$

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and current in a pure resistive circuit are in phase

Instantaneouspowerisgivenby P

$$
\begin{aligned}
& =\mathrm{ei} \\
& =\mathrm{E}_{\mathrm{m}} \sin \mathrm{wt} \cdot \mathrm{I}_{\mathrm{m}} \sin \mathrm{wt} \\
& =\mathrm{E}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \sin ^{2} \mathrm{wt} \\
& =\frac{E_{m} I_{m} \cdot 2 \sin ^{2} w t}{2} \\
& =\frac{E_{m} I_{m}}{\sqrt{2}} \cdot(1-\cos 2 w t) \\
& P=\frac{E_{m} I_{m}}{\sqrt{2}} \frac{E_{m} I_{m}}{\sqrt{2}}-\frac{\cos 2 w t}{\sqrt{2}} \frac{V_{m}}{\sqrt{2}}
\end{aligned}
$$

i.e. $P=V_{m} \frac{I_{m}}{\sqrt{2}} \frac{V_{m} I_{m}}{\sqrt{2}}-\frac{\cos 2 w t}{\sqrt{2}} \frac{\sqrt{\sqrt{2}}}{\sqrt{2}}$

Where $\underset{\sqrt{2}}{V_{m}} \frac{I_{m} \text { iscalledconstantpartofpower. }}{\sqrt{2}}$
$\frac{V_{m}}{\sqrt{2}} I_{m} \cdot \cos 2 w t$ is calledfluctuatingpartofpower.
Thefluctuatingpart $\frac{V_{m} I_{m}}{2} \cdot \cos 2 w t$ offrequencydoublethatofvoltageandcurrent waves.

Hencepowerforthewholecycleis $P={ }^{V_{m}} \cdot I_{m}=V \frac{}{\sqrt{2}} \frac{{ }^{m} s s}{} \cdot I_{r m s}$
$\Rightarrow \mathrm{P}=$ VI watts

A.CthroughPureInductance: \rightarrow

Letinductanceof'L’henryisconnectedacrosstheA.C.supply

$\nu=V_{m} \sin w t$
AccordingtoFaraday'slawsofelectromagneticinductancetheemfinduced across the inductance

$$
V=L^{d i} \overline{d t}
$$

$\frac{d i}{d t}{ }_{\text {istherateofchange ofcurrent }}$
$V \sin w t=L^{d i}$
${ }_{m} \quad \overline{d t}$
$\xrightarrow{d i}=\frac{V_{m} \sin w t d t}{L}$
$\Rightarrow d i=\frac{V_{m_{\sin } w t . d t}^{L}}{L}$

Integratingbothsides,
$\int d i=\int_{L} \sin w t . d t$
$i=\frac{V_{m}}{L}\left(\frac{\cos w t}{w}\right)$

Hencetheequationof currentbecomes $i=I_{m} \sin (w t-\pi / 2)$
So we findthat ifapplied voltage isrep[resented by $\quad v=V_{m} \sin w t$, thencurrent flowing in a purely inductive circuit is given by

$$
i=I_{m} \sin (w t-\pi / 2)
$$

Herecurrentlagsvoltagebyanangle $\pi / 2$ Radian.

$$
\begin{aligned}
\text { Powerfactor } & =\cos \phi \\
& =\cos 90^{\circ} \\
& =0
\end{aligned}
$$

PowerConsumed $=\mathrm{VI} \cos \phi$

$$
\begin{aligned}
& =\mathrm{VI} \times 0 \\
& =0
\end{aligned}
$$

Hence, thepowerconsumedbyapurelyInductivecircuitiszero.

A.C.ThroughPureCapacitance: \rightarrow

Letacapacitanceof 'C'faradisconnectedacrosstheA.C. supplyof applied voltage

$$
\begin{equation*}
v=V_{m} \sin w t \tag{1}
\end{equation*}
$$

Let ' q '=changeonplateswhenp.d.betweentwoplatesofcapacitoris' v '

$$
\begin{aligned}
& q=c v \\
& q=c V_{m} \sin w t
\end{aligned}
$$

$$
\begin{aligned}
& { }^{d q}=c{ }_{c}^{d} \frac{\left(V_{\sin } w t\right) d t}{d t} \\
& i=c V_{m} \sin w t \\
& =w c V_{m} \cos w t \\
& =\frac{V_{m}}{1 / w c}=\cos w t
\end{aligned}
$$

$$
=\frac{V_{m}=\cos w t}{X c} \quad\left[\mathrm{Q} X_{=}=\frac{1}{c}=\frac{1}{w c} \quad 2 \pi f c \quad\right. \text { isknownascapacitivereactance }
$$

in ohm.]

$$
\begin{aligned}
& =I_{m} \cos w t \\
& =I_{m} \sin (w t+\pi / 2)
\end{aligned}
$$

Herecurrentleadsthesupplyvoltagebyanangle $\pi / 2$ radian.
Powerfactor

$$
=\cos \phi
$$

$$
=\cos 90^{\circ}=0
$$

Power Consumed $=$ VI $\cos \phi$

$$
=\mathrm{VI} \times 0 \quad=0
$$

Thepowerconsumedbyapurecapacitivecircuitiszero.

A.C.ThroughR-LSeriesCircuit: \rightarrow

TheresistanceofR-ohmandinductanceofL-henryareconnectedinseries across the A.C. supply of applied voltage

$$
\begin{align*}
& e=E_{m} \sin w t \tag{1}\\
& \begin{array}{l}
V=V_{R}+j V_{L} \\
=\sqrt{V^{2}+V^{2}} \angle \phi=\tan ^{-1}\left(X_{L}\right) \\
\left(\frac{R}{R}\right)
\end{array} \\
& \left.=\sqrt{(I R)^{2}+(I X} \quad\right)^{2}<\phi=\tan ^{-1}\left(X_{L}\right) \\
& =I \quad \sqrt{R^{2}+X \quad 2} L_{L}^{L} \angle \phi=\tan ^{-1}\left(X_{L}\left(\overline{)_{R}}\right)\right. \\
& \begin{array}{l}
V=I Z \quad \angle \phi=\tan ^{-1}\left(\frac{X_{L}}{L}\right)(\bar{R})
\end{array}
\end{align*}
$$

WhereZ $=\sqrt{R^{2}+X_{L}^{2}}$
$=R+j X_{L}$ isknownasimpedanceofR-LseriesCircuit.
$I=\frac{V}{Z \angle \phi}=\frac{E_{m} \sin \omega t Z}{\angle \phi}$
$I=I_{m} \sin (w t-\phi)$
Herecurrentlagsthesupplyvoltagebyanangle ϕ.
PowerFactor: \rightarrow Itisthecosineoftheanglebetweenthevoltageandcurrent.
OR
Itistheratioofactivepowertoapparent power.
OR
Itistheratioofresistancetoinpedence.
Power: \rightarrow
$=v . i$
$=V_{m} \sin w t . I_{m} \sin (w t-\phi)$
$=V_{m} I_{m} \sin w t \cdot \sin (w t-\phi)$
$={ }^{1} V I$
$\begin{array}{ll}=\frac{2^{m m}}{2^{m m}} & 2 \sin w t \cdot \sin (w t-\phi) \\ =\frac{V I}{2^{m n}} & {[\cos \phi-\cos 2(w t-)] \phi}\end{array}$
Obviouslythepowerconsistsoftwoparts.
(i) aconstantpart ${ }^{1} V /$ cos ϕ whichcontributestorealpower.
$\overline{2^{n m}}$
(ii) apulsatingcomponent ${ }^{I} V_{\overline{2^{n m}}} \frac{\text { cos }}{}$ (2wt-ф)whichhasafrequencytwice
that of the voltage and current.It does not contribute to actual power since itsaverage value over a complete cycle is zero.

Henceaveragepowerconsumed

$$
\begin{aligned}
& ={ }_{2^{n m}}^{1} V \text { cos } \phi \\
& =\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos { }^{2} \\
& =V / \cos \phi
\end{aligned}
$$

WhereV\&Irepresentsther.m.svalue.

A.C.ThroughR-CSeriesCircuit: \rightarrow

Theresistanceof ${ }^{\circ}$ ' -ohmandcapacitanceof ${ }^{\circ} \mathrm{C}^{\prime}$ faradisconnectedacrossthe A.C.supplyofappliedvoltage

$$
\begin{equation*}
e=E_{m} \sin w t \tag{1}
\end{equation*}
$$

$$
V=I Z
$$

Where $Z=R-j X_{C}=\sqrt{R^{2}+X_{C}{ }^{2}}$ isknownasimpedanceofR-Cseries Circuit.

$$
=\underline{E_{m}} \underline{\sin w t} \bar{L}
$$

$$
=\frac{E_{m} \sin (w t+\phi)}{Z \measuredangle}
$$

$\Rightarrow I=I_{m} \sin (w t+\phi)$
Herecurrentleadsthesupplyvoltagebyanangle' ϕ '.

A.C.ThroughR-L-CSeriesCircuit: \rightarrow

Letaresistanceof ${ }^{\prime}$ R'-ohminductanceof ${ }^{\prime}$ L'henryandacapacitanceof ${ }^{\prime} \mathrm{C}^{\prime}$ faradareconnectedacrosstheA.C.supplyinseriesofappliedvoltage

$$
\begin{aligned}
& e=\overrightarrow{V_{R}+V_{L}+V_{C}} \\
& =V_{R}+j V_{L}-j V_{C} \\
& =V_{R}+j\left(V_{L}-V_{C}\right) \\
& =I_{R}+j\left(I X_{L}-I X_{C}\right) \\
& \begin{array}{l}
=I\left[R+j\left(X_{L}-X_{C}\right)\right] \\
\left.=I \sqrt{R^{2}+(X-X} \quad{ }_{C}\right)^{2}
\end{array} \quad \angle \pm \phi=\tan ^{-1}\left(X_{L}-X_{C}\right) \\
& =I Z \angle \pm \phi
\end{aligned}
$$

Where $\quad Z=I \sqrt{R^{2}+\left(X_{L}-X_{C}\right)}{ }^{2}$ isknownastheimpedanceofR-L-CSeries Circuit.

If $X_{L}>X_{C}$, thentheangleis + ve. If $X_{L}<$
X_{C},then the angleis-ve.
Impedanceisdefinedasthephasorsumofresistanceandnetreactance
$e=I Z \quad \pm \phi$
$\rightarrow I=\frac{e}{Z \angle \pm \phi} I Z \angle \pm \phi \quad=\frac{E_{m} \sin w t}{Z \angle \pm \phi} \quad=I \sin (w t \quad \pm \phi)$
(1) If $X_{\nu} X_{C}$, then P.f willbe lagging.
(2) If $X_{L}<X_{C}$,then,P.fwillbe leading.
(3) If $X_{L}=X_{C}$, then, thecircuitwillberesistiveone.Thep.f.becomesunity andtheresonanceoccurs.

REASONANCE

It is defined as the resonance in electrical circuit having passive or active elements represents a particular state when the current and the voltage in the circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a particular frequency and the impedances being either minimum or maximum at unity power factor
Resonanceareclassifiedintotwotypes.
(1) SeriesResonance
(2) ParallelResonance
(1) SeriesResonance:- Letaresistanceof ${ }^{\prime}$ R'ohm, inductanceof ${ }^{\circledR} L$ ' henryandcapacitanceof ${ }^{\text {C }}$ ' faradareconnectedinseriesacrossA.C.supply

$e=E_{m} \sin w t$
Theimpedanceofthecircuit

$$
\begin{aligned}
& \left.Z=R+j\left(X_{L}-X_{C}\right)\right] \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)}
\end{aligned}
$$

Theconditionofseriesresonance:

Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero Thep.f. becomes unity.
The net reactance will be zero.
The current becomes maximum.
Atresonancenetreactanceiszero

$$
\begin{aligned}
& X_{L}-X_{C}=0 \\
& \Rightarrow X_{L}=X_{C} \\
& \Rightarrow W L_{o}=\frac{1}{W_{o} C} \\
& \Rightarrow W_{o}^{2} L C=1 \\
& \Rightarrow W_{o}^{2}=1 \\
& o \\
& \Rightarrow W_{o}=\frac{1}{\sqrt{L C}} \\
& \Rightarrow 2 \pi f_{o}=\frac{1}{\sqrt{L C}} \\
& \Rightarrow f_{o}=\frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Resonantfrequency $(f)=\frac{1}{o} . \frac{1}{2 \pi \sqrt{L C}}$
ImpedanceatResonance

$$
Z_{0}=R
$$

CurrentatResonance

$$
I_{o}^{V} \bar{R}
$$

Powerfactoratresonance

$$
\begin{array}{rlrl}
p: f . & =\underline{R}=\underline{R}=1 & {\left[\mathrm{Q} Z_{o}=R\right]} \\
Z_{o} & R &
\end{array}
$$

ResonanceCurve:-

At low frequency the X_{c} isgreater and the circuit behavesleading and at high frequency the X_{L} becomes high and the circuitbehaves lagging circuit.
Iftheresistancewillbelowthecurvewillbestiff(peak).

- If the resistance will go oh increasing the current goes on decreasing and the curve become flat.

BandWidth: \rightarrow

At point 'A'the power lossis $I_{0}{ }^{2} R$.
Thefrequencyisf ${ }_{0}$ whichisatresonance.

$I^{2} R$

Atpoint ${ }^{\prime}$ 'thepowerlossiso
2 .
Thepowerlossis 50% ofthepowerlossatpoint
'A"/

Hencethefrequencies
correspondingtopoint ${ }^{\prime} \mathrm{B}$ 'isknownashalfpowerfrequencies $f_{l} \& f_{2}$.
$f_{l}=$ Lowerhalfpowerfrequency

$$
f_{1}=f_{0}-\quad \frac{R}{4 \pi L}
$$

$F_{2}=$ Upperhalfpower frequency

$$
f_{2}=f_{0}+\quad \frac{R}{4 \pi L}
$$

Band width(B.W.)isdefinedasthedifferencebetweenupperhalfpowerfrequency ad lower half power frequency.
B.W. $=f_{2} \quad-f_{1}=\frac{R}{2 \pi L}$

Selectivity: \rightarrow

SelectivityisdefinedastheratioofBandwidthtoresonantfrequency
Selectivity $=\frac{B . W .=R}{f_{0}} \quad \overline{2 \pi L} \quad$ Selectivity $=\frac{R}{2 \pi f_{0} L}$

QualityFactor(Q-factor): \rightarrow

It isdefined asthe ratio of $2 \pi \times$ Maximum energy storedto energy dissipated per cycle
Q-factor $=\frac{2 \pi \times \frac{1}{L I^{2}} \quad 0}{I^{2} R T}$

$$
=\frac{\pi L(\sqrt{2} I)^{2}}{I^{2} R T}
$$

$$
=\frac{\pi L .2 I^{2}}{I^{2} R T}
$$

$$
=\frac{\pi L .2 I^{2}}{I^{2} R T}
$$

$=\frac{2 L \pi}{R T}$
Qualityfactor $==2 \frac{2 f_{0} L \cdot \pi}{R}$

Qualityfactorisdefinedasthereciprocalofpowerfactor.

Qfactor $==\frac{1 .}{\cos \phi}$
Itisthereciprocalofselectivity. Q-factorOrMagnificationfactor
$=\frac{\text { VoltageacrossInductor. }}{\text { Voltage across resistor }}$
$=\frac{\mathrm{I}_{0} \underline{X_{L}}}{\mathrm{I}_{0} R}$
$=\underline{X_{L}}$
$=2 f_{\underline{L}}^{\underline{L}}=\underline{W}_{0} \underline{L} R$

Q-factor $==\frac{W_{0} L}{R}$

Q-factorfactor $\quad=\frac{\text { VoltageacrossCapacotor. }}{\text { Voltageacrossresistor }}$

$$
=\frac{\mathrm{I}_{0} \underline{X}_{c}}{\mathrm{I}_{0} R}
$$

$$
\begin{aligned}
& =\underline{X_{C}} \\
& R \\
& =\frac{1}{2 \pi f_{0} C}=\frac{1}{2 \pi f_{0} C R}
\end{aligned}
$$

Q-factor $=\frac{1}{W_{0} C R}$
$Q^{2}=\frac{W_{0} L}{R} \times \frac{1}{W_{0} C R}$
$Q^{2}=\frac{1}{R^{2} C}$
$Q=\sqrt{\frac{1}{R^{2} C}}$
$Q=\frac{1}{R} \sqrt{\frac{L}{C}}$

GraphicalMethod: \rightarrow

(1) ResistanceisindependentoffrequencyItrepresentsastraightline.
(2) InductiveReactance $X_{L}=2 \pi \mathrm{fL}$

It is directly proportional to frequency. As the frequency increases, X_{L} increases
(3) CapacitiveReactance $X_{C}==\frac{1}{2 \pi / C}$

It is inversely proportional to frequency. As the frequency increases, X_{C} decreases.

When frequency increases, X_{L} increases and X_{C} decreasesfromthe highervalue.

Atacertainfrequency. $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$
ThatparticularfrequencyisknownasResonantfrequency.
Variationofcircuitparameterinseriesresonance:
(2) Parallel Resonance :- Resonance willoccur when the reactive part of the line current is zero.

At resonance,
$\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{L}} \sin \phi=0$
$I_{C}=I_{L} \sin \phi$
$\Rightarrow \frac{V}{X_{C}}=\frac{V}{\sqrt{R^{2}+X_{L}^{2}}} \sin \phi$
$\Rightarrow \frac{V}{\overline{X_{C}}} \frac{V}{\sqrt{R^{2}+X_{L}^{2}}} \times \frac{X_{L}}{\sqrt{R^{2}+X^{2}{ }_{L}}}$
$\Rightarrow \frac{1}{X_{C}}=\frac{X_{L}}{R^{2}+X^{2}{ }_{L}}$
$\Rightarrow R^{2}+X^{2}=X . X \quad L \quad c$
$\Rightarrow Z^{2}=X_{L \cdot} \cdot X \quad c=W L_{0} \times \quad \frac{1}{W_{0} C}$

$$
\begin{gathered}
Z^{2}=\frac{L}{\bar{C}} \\
\Rightarrow R^{2}+X^{2}=\frac{L}{L} \quad{ }^{C}{ }^{C} L \\
\Rightarrow R^{2}+\left(2 \pi f^{2}\right)^{2}={ }^{0} \bar{C} \\
\Rightarrow R^{2}+4 \pi^{2} f^{2} L^{2}={ }^{2} \quad \bar{C}
\end{gathered}
$$

$\Rightarrow 4 \pi^{2} f^{2} L_{0}^{2}=-{ }_{0}^{L} R^{0}$
$\Rightarrow \begin{aligned} f^{2}= & 1 C \\ 0 & \frac{0}{4 \pi f^{2} 2_{0} L}\end{aligned}=\binom{L}{C}$
$\Rightarrow f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
$f_{0}=$ Resonantfrequencyinparallelcircuit.
Current at Resonance $=I_{L} \cos \phi$

$$
\begin{aligned}
& =\frac{V}{\sqrt{R^{2}+X_{L}^{2}}} \cdot \frac{R}{\sqrt{R^{2}+X_{L}^{2}}} \\
& =\frac{V R}{R^{2}+X^{2}{ }_{L}} \\
& =\frac{V R}{Z^{2}} \\
& =\frac{V R}{L / C}=\frac{V}{L / R C} \\
& =\frac{\mathrm{V}}{\text { Dynamic Impedence }}
\end{aligned}
$$

$L / R C \rightarrow$ DynamicImpedanceofthe circuit.
or, dynamic impedances is defined as the impedance at resonance frequency in parallel circuit.

ParallelCircuit: \rightarrow

Theparallelresonancecondition:

Whenthereactivepartofthelinecurrentiszero. The net reactance is zero.
Thelinecurrentwillbeminimum.
The power factor will be unity
Impedance $\begin{array}{ll} & Z_{1}=R_{1}+j X_{L} \\ & Z_{2}=R_{2}-j X_{C}\end{array}$
Admittance $Y_{1}=\frac{1}{Z_{1}}=\frac{1}{R_{1}+j X_{L}}$

$$
=\frac{\left(R_{1}+j X_{L}\right)}{\left(R_{1}+j X_{L}\right)\left(R_{1}-j X_{L}\right)}
$$

$$
=\frac{R_{1}+j X_{L}}{R_{1}^{2}+X^{2}}{ }_{L}
$$

$$
Y_{\mp} \frac{R_{1}}{R_{1}^{2}+X_{L}^{2}}-j \frac{X_{L}}{R_{1}^{2}+X_{L}^{2}}
$$

Admittance $Y_{2}=\frac{1}{\overline{Z_{2}}} \quad \frac{1}{R_{1}+j X_{C}}$

$$
\begin{aligned}
& \left.=\frac{\left(R_{2}+j X_{C}\right)}{\left(R 2_{1}-j X_{C}\right)\left(R_{2}+\right.} j X_{C}\right) \\
& =\frac{R_{2}+j X_{L}}{R_{2}^{2}+X^{2}} \\
& Y_{\mp} \frac{R_{2}}{R_{2}^{2}+X^{2}}{ }_{C}+j \frac{X_{C}}{R_{2}^{2}+X^{2}{ }_{C}}
\end{aligned}
$$

TotalAdmittanceAdmittance $\quad\binom{1}{Z}=\frac{1}{Z_{1}}+Z_{2}^{1}$

At Resonance,
$\frac{X_{L}}{R_{1}^{2}+X^{2}{ }_{L}}-\frac{X_{C}}{R_{2}^{2}+X^{2}{ }_{C}}=0$
$\rightarrow \frac{X_{L}}{R_{1}^{2}+X^{2}{ }_{L}}=\frac{X_{C}}{R_{2}^{2}+X^{2}}$
$\Rightarrow{ }_{L} X_{2}{ }_{2}\left(R^{2}+X_{C}^{2}\right)=X\left(R^{2}+X^{2}\right)$
$\left.\Rightarrow 2 \pi f L L^{2} R^{2}+\frac{{ }^{c}{ }^{c}}{4 \pi^{2} f^{2} C^{2}}\right)^{1}=\frac{1^{L}}{2 \pi f C}\left(\begin{array}{cc}R^{2} & \pi^{2} \\ 1 & \left.f^{2} L^{2}\right)\end{array}\right.$
$\Rightarrow 2 \pi f L R_{2}{ }^{2}+\frac{L}{2 \pi f C^{2}}=\frac{R^{2}}{2 \pi f C}+\frac{2 \pi}{f L^{2}}$
C

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow Y=Y_{1}+Y_{2} R_{1}-j X_{L} \\
\Rightarrow Y=\frac{R_{1}^{2}-X_{L}^{2}}{R_{1}^{2}+X_{L}^{2}}+\frac{R 2}{R_{2}^{2}+X_{C}{ }^{2}}+j \begin{array}{c}
X_{C} \\
R_{2}^{2}+X^{2}{ }_{C}
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{L}{2} f^{2} C^{2}\left(\begin{array}{l}
R^{2} \\
2, f C= \\
)
\end{array} \begin{array}{l}
2 \pi \\
f L^{2} \\
C
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 4 \pi^{2} f^{2} L C=C \quad \overline{L_{-}}{ }^{2}={ }^{1} L-\frac{C R_{1}}{L-C R_{2}^{2}} \\
& \left.\left.\Rightarrow 4 \pi^{2} f^{2}=\quad 1\right\} \begin{array}{c}
\bar{C} \\
L C \\
L-C R^{2} \\
{ }_{1}{ }^{2} \\
L-C R^{2}
\end{array}\right) \\
& \left.\Rightarrow f^{2}=\frac{1}{4 \pi L C\left(L-C R_{2}\right.}\right) \\
& \Rightarrow f=\frac{1}{2 \pi} \sqrt{L C} \sqrt{\left(\frac{L-C R_{1}^{2}}{L-C R_{2}^{2}}\right)} \\
& \Rightarrow f=\frac{1}{2 \pi} \sqrt{\left(\frac{L-C R}{L^{2} C-L C^{2}{ }^{2}{ }^{2}{ }^{2}{ }_{2}}\right)}
\end{aligned}
$$

fiscalledResonantfrequency.

$$
\text { If } R^{2}=0
$$

Then $f=\frac{1}{2 \pi} \sqrt{\frac{L-C R_{1}{ }^{2}}{L^{2} C}}$
$=\frac{1}{2 \hbar} \sqrt{\frac{L-C R_{1}^{2}}{C}}$
$=\frac{1}{2 \pi L} \sqrt{\frac{L}{C}}-R_{1}^{2}$
$=\frac{1}{2 \pi} \sqrt{\frac{L}{L^{2} C}}{ }_{-1}^{R^{2}} L^{2}$
$f=\frac{1}{2 \pi} \sqrt{\frac{L}{L C}}-{ }^{-1} L^{R^{2}}$
$\mathrm{IfR}_{1} \mathrm{andR}_{2}=0$, then

$$
\frac{f=\frac{1}{2 \pi} \sqrt{\frac{L}{L^{2} C}}}{f={ }^{1}} \frac{1}{2 \pi} \sqrt{\frac{1}{L C}}=\frac{1}{2 \pi \sqrt{L C}}
$$

ComparisonofSeriesandParallelResonantCircuit: \rightarrow

Item	Seriesckt(R-L-C)	Parallelckt(R-Land C)
* ImpedanceatResonance	Minimum	Maximum
* CurrentatResonance	$\text { Maximum }={ }_{R}^{\underline{V}}$	$\text { Minimum }=\frac{V}{(L / C R)}$
* EffectiveImpedance	R	$\frac{L}{C R}$
* P.f.at Resonance	Unity	Unity
* ResonantFrequency	$\frac{1}{2 \pi \sqrt{L C}}$	$\frac{1}{2 \pi} \sqrt{\frac{1}{L C} R} \frac{2}{L^{2}}$
* ItMagnifies	Voltage	Current
* Magnificationfactor	$\frac{W L}{R}$	$\frac{W L}{R}$

Parallelcircuit: \rightarrow

$Z_{1}=R_{1}+j X_{L}=\sqrt{R_{1}^{2}+X_{L}^{2}} \angle \phi_{1}$
$Z_{2}=R_{1}-j X_{C}={ }_{V} \sqrt{R 2_{1}{ }^{2}+X_{C}{ }^{2}} \angle-\phi_{2}$
$I=\quad V \quad=Z_{1} \angle-\phi=I \angle-\phi \quad 1$
Where $=V Y$

$$
Z_{1}
$$

Here $\mathrm{Y}_{1} \rightarrow$ Admittanceofthecircuit

Admittanceisdefinedasthereciprocalofimpedence.

$$
\begin{aligned}
& I=V Y=\frac{v}{1} \quad \frac{V}{R_{1}+j X_{L}} \\
& I_{\overline{2}} \frac{V}{Z_{2} \angle-2 \phi}=\frac{V}{Z_{2}} \angle \phi_{1}=V Y_{2} \angle \phi=I_{2} \angle \phi_{2}
\end{aligned}
$$

$$
I=\sqrt{I_{1}^{2}+I_{2}^{2}}+2 I_{1} I_{2} \cos \left(\phi_{1}+\phi_{2}\right)
$$

$$
I=I_{1} \angle-1+I_{2} \quad \angle \phi_{2}
$$

The resultant current "I" is the vector sum of the branch currents I_{1} \& I_{2} can be found by using parallelogram low of vectors or resolving I_{2} into their X
-andY-components(oractiveandreactivecomponentsrespectively)andthen by combining these components.

SumofactivecomponentsofI ${ }_{1}$ andI $_{2}=\mathrm{I}_{1} \cos \phi_{1}+\mathrm{I}_{2} \cos \phi_{2}$
SumofthereactivecomponentsofI andI $_{2}=I_{2} \sin \phi_{2}-\mathrm{I}_{1} \sin \phi_{1}$

EXP-01:

A60Hzvoltageof 230 Veffectivevalueisimpressedonaninductanceof

0.265 H

(i) Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero axis of the voltage wave be att=0.
(ii) Showthevoltageandcurrentonaphasordiagram.
(iii) Findthemaximumenergystoredintheinductance.

Solution:-

$$
\begin{aligned}
& V_{\max }=\sqrt{2} V=\sqrt{2} \times 230 \mathrm{~V} \\
& f=60 \mathrm{~Hz}, \quad W=2 \pi f=2 \pi \times 60=377 \mathrm{rad} / \mathrm{s} . \\
& x_{l}=w l=377 \times 0.265=100 \Omega
\end{aligned}
$$

(i) Thetimeequationforvoltageis $V(t)=2302 \sin 377 \sqrt{2}$.

$$
I_{\max }=V_{\max } / x_{l}=230^{\sqrt{2}} / 100 .=2.3 \sqrt{3}
$$

$\phi=90^{\circ}(\mathrm{lag})$.
QCurrentequationis.
$i(t)=2.32 \sin (377 t-\pi / 2)$
or $=2.32 \cos 377 t$
(ii) Iti
(iii) or ${ }_{\text {max }}=\frac{1}{2} L I_{\text {max }}^{2}=\overline{2}^{\times 0.265 \times(2.32)^{2}=1.4 J}$

Example-02:

The potential difference measured across a coil is 4.5 v , when it carries a direct current of 9 A . The same coil when carries an alternating current of 9 A at 25 Hz , the potential difference is 24 v . Find the power and the power factor when it is supplied by $50 \mathrm{v}, 50 \mathrm{~Hz}$ supply.

Solution:

LetRbethed.c.resistanceandLbeinductanceofthecoil.

$$
R=V / I=4.5 / 9=0.5 \Omega
$$

Witha.c.currentof $25 \mathrm{~Hz}, \mathrm{z}=\mathrm{V} / 1$.

$$
\begin{aligned}
& \frac{24}{9}=2.66 \Omega \\
& x_{F}=\sqrt{Z^{2}-R^{2}}=\sqrt{2.66^{2}-0.5^{2}} \\
&=2.62 \Omega
\end{aligned}
$$

$$
x_{l}=2 \pi \times 25 \times L
$$

$$
x_{l}=0.0167 \Omega
$$

At 50 Hz

$$
\begin{gathered}
x_{l}=2.62 \times 2=5.24 \Omega \\
Z=\sqrt{0.5^{2}+5.24^{2}} \\
=5.06 \Omega \\
\mathrm{I}=50 / 5.26=9.5 \mathrm{~A} \\
\mathrm{P}=\mathrm{I}^{2} / \mathrm{R}=9.5^{2} \times 0.5=45 \mathrm{watt} .
\end{gathered}
$$

Example-03:

A50-ufcapacitorisconnectedacrossa230-v,50-Hzsupply. Calculate
(a) Thereactanceofferedbythecapacitor.
(b) Themaximumcurrentand
(c) Ther.m.svalueofthecurrentdrawnbythecapacitor.

Solution:

(a) $x_{l}=\frac{1}{w c} \quad \frac{1}{2 \pi \mathrm{fe}}=\frac{1}{2 \pi \times 50 \times 50 \times 10^{-6}}=63.6 \Omega$
(c) Since230vrepresentsther.m.svalue

$$
\mathrm{Q} I_{r_{m}}=230 / x_{=}=230 / 63.6=3.62 \mathrm{~A}
$$

(b) $\quad I_{m}=I_{r . m} \times \quad \sqrt{2}=3.62 \times \sqrt{2}=5.11 \mathrm{~A}$

Example-04:

In a particularR -L series circuita voltageof 10 v at50 Hzproduces a current of 700 mA . What are the values of R and L in the circuit ?

Solution:

(i) $Z=\sqrt{R^{2}+(2 \pi \times 50 L)^{2}}$

$$
=\sqrt{R^{2}+98696 L^{2}}
$$

$$
V=1 z
$$

$$
10=700 \times 10^{-3} \quad \sqrt{\left(R^{2}+98696 L^{2}\right)}
$$

$$
\sqrt{\left(R^{2}+98696 L^{2}\right)}=10 / 700 \times 10^{-3}=100 / 7
$$

$$
\begin{equation*}
R^{2}+98696 L^{2}=10000 / 49 \tag{I}
\end{equation*}
$$

(ii) Inthesecondcase $Z=\sqrt{R^{2}+(2 \pi \times 75 L)^{2}}$

$$
\begin{aligned}
& \mathrm{Q} 10=500 \times 10^{-3} \quad \sqrt{\left.R^{2}+222066 L^{2}\right)}=20 \\
& \sqrt{\left.R^{2}+222066 L^{2}\right)}=20
\end{aligned}
$$

$$
\begin{equation*}
R^{2}+222066 L^{2}=400 \tag{II}
\end{equation*}
$$

SubtractingEa.(I)from(ii),weget,

$$
\begin{aligned}
& 222066 L^{2}-98696 L^{2}=400-(10000 / 49) \\
& \Rightarrow 123370 L^{2}=196 \\
& \Rightarrow L^{2}=\frac{196}{123370} \\
& \Rightarrow L=\sqrt{\frac{196}{123370}}=0.0398 H=40 \mathrm{mH}
\end{aligned}
$$

SubstitutingthisvalueofLinequation(ii)weget $\quad R^{2}+222066 L^{2}(0.398)^{2}=400$

$$
\Rightarrow R=6.9 \Omega
$$

Example-04:

A 20Ω resistor is connected in series with an inductor, a capacitor and an ammeter across a $25-\mathrm{v}$, variable frequency supply. When the frequency is 400 Hz , the current is at its Max ${ }^{\mathrm{m}}$ value of 0.5 A and the potential difference across the capacitor is 150 v . Calculate
(a) Thecapacitanceofthecapacitor.
(b) Theresistanceandinductanceoftheinductor.

Solution:

Sincecurrentismaximum,thecircuitisinresonance.

$$
x_{l}=V_{C} / 1=150 / 0.5=300 \Omega
$$

(a) $x_{l}=1 / 2 \pi f e \Rightarrow 300=1 / 2 \pi \times 400 \times c$
$\Rightarrow c=1.325 \times 10^{-6} f=1.325 \mu f$.
(b) $x_{l}=x_{l}=150 / 0.5=300 \Omega 2$
$2 \pi \times 400 \times \mathrm{L}=300 \Rightarrow$
$\mathrm{L}=0.49 \mathrm{H}$
(c) At resonance,

Circuitresistance $=20+$ R
$\Rightarrow \mathrm{V} / \mathrm{Z}=2510.5$
$\Rightarrow \mathrm{R}=30 \Omega$

Exp. 05

An R-L-C series circuits consists of a resistance of 1000Ω, an inductance of 100 MH an a capacitance of w $\mu \mu \mathrm{f}$ or 10 PK
(ii) Thehalfpowerpoints.

Solution:

i) $\quad f o=\frac{1}{2 \pi \sqrt{10^{-1} \mathrm{k} 0^{-4}}}=\frac{10^{6}}{2 \pi}=159 \mathrm{KHz}$
ii) $\quad \phi=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{1000} \times \sqrt{\frac{10^{-1}}{10^{-11}}}=100$
iii)
$f_{\overline{1}}=f O^{-}{ }^{R} \frac{}{4 \pi l}=159 \times 10^{3}-\frac{1000}{4 \pi \times 10^{-1}}=158.2 \mathrm{KHz}$
$f_{2}=f o O^{R} \frac{}{4 \pi l}=15911^{-3}+\frac{1000}{4 \pi \times 10^{-1}}=159.8 \mathrm{KHz}$.

Exp. 06

Calculatetheimpedanceoftheparallel-turnedcircuitasshowninfig.
14.52 at a frequency of 500 KHz and for band width of operation equal to 20 KHz . The resistance of the coil is 5Ω.
Solution:
At resonance, circuit impedance is $L / C R$. We have been given the valueof R but that of L and C has to be found from the given the value of R but thatof L and C has to be found from the given data.

$\mathrm{C}=2.6 \times 10^{-9}$
$\mathrm{Z}=\mathrm{L} / \mathrm{CR}=39 \times 10^{-6} / 2.6 \times 10^{-9} \times 5$

$$
=3 \times 10^{3} \Omega
$$

Example: A coil of resistance 20Ω and inductance of $200 \mu \mathrm{H}$ is in parallel with a variable capacitor. This combination is series with a resistor of 8000Ω. The voltage of the supply is 200 V at a frequency of $10^{6} \mathrm{H}_{\mathrm{Z}}$. Calculate
i) thevalueofCtogive resonance
ii) the Qofthe coil
iii) thecurrentineachbranchofthecircuitatresonance

Solution:

$\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi^{*} 10^{6} * 200 * 10^{-6}=1256 \Omega$
Thecoilisnegligibleresistanceincomparisontoreactance.

$$
f=\frac{1}{2 \pi \sqrt{2 C}}
$$

$$
10^{6}=\frac{1}{2 \pi \sqrt{200} \times C * 10^{-5}}
$$

ii) $\mathrm{Q}=\frac{2 \pi f \mathrm{~L}}{R}=2 \pi * 10^{6} * 200 * \frac{10^{-4}}{20}=62.8$
iii) dynamicimpedanceofthecircuit $Z=\mathrm{L} / \mathrm{CR}=200^{*} 10^{-6} /\left(125^{*} 10^{-}\right.$
$12 * 20)=80000 \Omega$
totalZ $=80000+8000=88000 \Omega$
$\mathrm{I}=200 / 88000=2.27 \mathrm{~mA}$
p.d across tuned circuit $=2.27 * 10^{-}$
$3 * 80000=181.6 \mathrm{~V}$ currentthroughinductivebranch $=$
$\frac{151.6}{\sqrt{10^{2}+1256^{2}}}=144.5 \mathrm{~mA}$ current through capacitor branch $=$
$6 V C$
$=181.6 * 2 \pi * 10^{6} * 125 * 10^{-12}=142.7 \mathrm{~mA}$

POLY-PHASECIRCUIT

Three-phasecircuitsconsistsofthreewindingsi.e.R.Y.B

E_{B}

$E_{R}=E_{m} \sin \omega t=E_{m} \angle 0$
$E_{Y}=E_{m} \sin (w t-120)=E_{m} \angle-120$
$E_{B}=E_{m} \sin (w t-240)=E_{m} \angle-240=E_{m} \angle 120$

3-фCircuitaredividedintotwotypes

- StarConnection
- DeltaConnection

StarConnection: \rightarrow

If three similar ends connected at one point, then it is known as star connected system.

The common point is known as neutral point and the wire taken from the neutral point is known as Neutral wire.

PhaseVoltage: \rightarrow

ItisthepotentialdifferencebetweenphaseandNeutral.
LineVoltage: \rightarrow
ItisItisthepotentialdifferencebetweentwophases.
RelationBetweenPhaseVoltageandLineVoltage: \rightarrow

LineVolatage $V_{R Y}=V_{R N}-V_{Y N} V_{L}=$

$$
\begin{aligned}
& =\sqrt{V_{P h}^{2} \sqrt{V_{P s 2^{2 h}}+V_{p h}-2 V} V_{p h p h}-V_{R N} V_{V N} C \frac{C r s}{2}} 60^{\circ} \\
& =\sqrt{3{ }^{2} V_{P h}}=\sqrt{3} V_{P h} \\
& V_{L}=\sqrt{3} V_{P h}
\end{aligned}
$$

SinceinabalancedB-phasecircuit $\mathrm{V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{YN}}=\mathrm{V}_{\mathrm{BN}}=\mathrm{V}_{\text {ph }}$

RelationBetweenLinecurrentandPhaseCurrent:-

In case of star connection system the leads are connected in series witheach phase

Hencethelinecurrentisequaltophasecurrent I_{L}

$$
=\mathrm{I}_{\mathrm{ph}}
$$

Powerin3-Phasecircuit:-

$$
\begin{aligned}
& P=V_{p h} I_{p h} \cos \phi \text { perphase } \\
& =3 V_{p h} I_{p h} \cos \phi \text { for3 phase } \\
& =3 \frac{V_{I}}{\sqrt{3}} L^{\cos \phi\left(\mathrm{Q} V_{L}=\sqrt{3} V_{p h}\right.} \\
& P=\sqrt{3} V_{L} I_{L} \cos \phi
\end{aligned}
$$

Summariesinstarconnection:

i) Thelinevoltagesare 120 apartfromeachother.
ii) Linevoltagesare 30° aheadoftheirrespectivephase voltage.
iii) Theanglebetweenlinecurrentsandthecorrespondinglinevoltageis $30+\varphi$
iv) Thecurrentinlineandphasearesame.

DeltaConnection:-

If the dissimilar ends of the closed mesh then it is called a Delta
Connected system

RelationBetweenLineCurrentandPhaseCurrent:-

Line Currentinwire - $1={ }^{i} R-{ }^{-} Y$
LineCurrentin wire - $2={ }^{i} Y-i^{i} B$
Line Currentinwire $-3=^{i} B-{ }^{i} R$

$$
\begin{aligned}
& I_{L}=I_{R}-I_{Y} \rightarrow \\
& =\sqrt{I_{R}{ }^{2}+I_{Y}{ }^{2}-2 I_{R} I_{Y} \cos 60} \\
& =\sqrt{I_{p h}{ }^{2}+I_{p h}{ }^{2}-2 I_{p h} J_{h} \times \frac{1}{2}} \\
& =\sqrt{3 I_{p h}{ }^{2}}, I_{L}=\sqrt{3 I_{p h}{ }^{2}} \\
& I_{I}=\sqrt{3} I_{p h}
\end{aligned}
$$

RelationBetweenLineVoltage\&PhaseVoltage: \rightarrow

$$
V_{L}=V_{p h}
$$

Power $==\sqrt{3} V_{L} L_{L} \cos \phi$

Summariesindelta:

i) Linecurrentsare 120° apartfromeachother.
ii) Linecurrentsare 30° behindtherespectivephasecurrent.
iii) Theanglebetweenthelinecurrentsandcorrespondinglinevoltagesis $30+\varphi$

MeasurementofPower: \rightarrow
(1) Bysinglewatt-metermethod
(2) ByTwo-wattmeterMethod
(3) ByThree-wattmeterMethod

MeasurementofpowerByTwoWattMeterMethod :-

PhasorDiagram:-

Let V_{R}, V_{Y}, V_{B} arether.m.svalueof3- ϕ voltagesand I_{R}, I_{Y}, I_{B} arether.m.s. values of the currents respectively.

CurrentinR-phasewhichflowsthroughthecurrentcoilofwatt-meter $\mathrm{W}_{1}=$ I_{R}
And $W_{2}=I_{Y}$
Potentialdifference acrossthevoltagecoilof $W_{1}=V_{R B}=V_{R}-V_{B}$

$$
\text { And } W_{2}=V_{Y B}=V_{Y}-V_{B}
$$

Assumingtheloadisinductivetypewatt-meterW ${ }_{1}$ reads.

$$
\begin{align*}
& W_{1}=V_{R B} I_{R} \cos (30-\phi) \\
& W_{1}=V_{L} I_{L} \cos (30-\phi) \tag{1}
\end{align*}
$$

WattmeterW ${ }_{2}$ reads

$$
\begin{align*}
& W_{2}=V_{Y B} I_{Y} \cos (30+\phi) \\
& W_{2}=V_{L} I_{L} \cos (30+\phi) \tag{2}\\
& W_{1}+W_{2}=V_{L} I_{L} \cos (30-\phi)+V_{L} I_{L} \cos (30+\phi) \\
& =V_{L} I_{L}\left[\cos (30-\phi)+V_{L} I_{L} \cos (30+\phi)\right] \\
& =V_{L} I_{L}\left(2 \cos 30^{\circ} \cos \phi\right) \\
& =V_{L} I_{L}(2 \times 3 \cos \phi) \\
& 2 \\
& W_{1}+W_{2}=\sqrt{3} V_{L} I_{L} \cos \phi \tag{3}\\
& W_{1}-W_{2}=V_{L} I_{L}[\cos (30-\phi)-\cos (30+\phi)
\end{align*}
$$

$$
\begin{aligned}
& =V_{L} I_{L}\left(2 \sin 30^{\circ} \sin \phi\right) \\
& =V_{L} I_{L}\left(2 \times \frac{1}{2} \times \sin \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
& W_{1}-W_{2}=V_{L} I_{L} \sin \phi \\
& \underline{W}_{1}-\underline{W}_{2}=\underline{V}_{L} \underline{I_{L}} \sin \quad \phi \\
& W_{1}+W_{2} \quad \sqrt{3} V_{L} I_{L} \cos \phi \\
& \frac{1}{\sqrt{3}}=\tan \phi \\
& \Rightarrow \tan \phi=\sqrt{ } \frac{3\left(W_{1}-W_{2}\right) \mid}{\left(\frac{W+W}{1}{ }^{2}\right)} \\
& \Rightarrow \phi=\tan ^{-1} \sqrt{ }\left(\frac{\left(3 W_{1}-W_{2}\right)}{\left.\frac{W+W}{2}\right)}\right.
\end{aligned}
$$

Variationinwattmeterreadingwithrespecttop.f:

Pf	W_{1} reading	W_{2} reading
$\varphi=0, \cos \varphi=1$	+veequal	+veequal
$\varphi=60, \cos \varphi=0.5$	0	+ve
$\varphi=90, \cos \varphi=0$	-ve,equal	+veequal

Exp. :01

A balanced star - connected load of $(8+56)$. Per phase is connected to a balanced 3-phase $100-\mathrm{v}$ supply. Find the cone current power factor, power and total volt-amperes.
Solution:

$$
\begin{aligned}
& Z_{p h}=\sqrt{8^{2}+6^{2}}=10 \Omega \\
& V_{p h}=400 / \quad \sqrt{3}=23 / v \\
& I_{p h}=V_{p h} / Z_{p h}=231 / 10=23.1 \mathrm{~A}
\end{aligned}
$$

i) $\quad \mathrm{I}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{ph}}=23.1 \mathrm{~A}$
ii) P.f. $=\cos \theta=\mathrm{R}_{\mathrm{ph}} / \mathrm{z}_{\mathrm{ph}}=8 / 10=0.8(\mathrm{lag})$
iii) Power $P=\sqrt{3} V_{L} I_{L} \cos \theta$
$=\sqrt{3} \times 400 \times 23.1 \times 0.8$
$=12,800 \mathrm{watt}$.
iv) Totalvoltamperes $=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}$

$$
\begin{aligned}
& =\sqrt{ } 3 \times 400 \times 23.1 \\
& =16,000 \mathrm{VA} .
\end{aligned}
$$

Exp. 02

Phase voltage and current of a star-connected inductive load is 150 V and 25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3wireand power is measured using two watt meters, find the readings of watt meters. Solution :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ph}}=150 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}=\sqrt{3} \times 150 \\
& \mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{L}}=25 \mathrm{~A}
\end{aligned}
$$

Total power $=\sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi=\sqrt{ } 3 \times 150 \times \sqrt{ } 3 \times 25 \times 0.707=7954$ watt.
$\mathrm{W}_{1}+\mathrm{W}_{2}=7954.00, \cos \phi=0.707$
$\phi=\cos ^{-1}(0.707)=45^{\circ}, \tan 45^{\circ}=1$
Nowforalaggingpowerfactor,

$$
\begin{aligned}
& \tan \phi=\sqrt{3}\left(W_{1}-W_{2}\right) /\left(W_{1}+W_{2}\right) \\
& \Rightarrow 1=\sqrt{ } \begin{array}{l}
\left(W_{1}-W_{2}\right) \mid \\
\left\{\frac{7954}{}\right\}
\end{array} \\
& \therefore\left(W_{1}-W_{2}\right)=4592 w
\end{aligned}
$$

From(i)and(ii)above, we get

$$
\mathrm{W}_{1}=6273 \mathrm{w} \quad \mathrm{~W}_{2}=1681 \mathrm{w}
$$

TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is switched from one condition to another,either by change in applied source or change in network elements, the response current and voltage change from one state to the other state.Thetimetakentochangefromaninitial steadystatetothefinalsteadystateisknown as the transient period.This response is known as transient response or transients. The response of the network after it attains a final steady value is independent of time and is calledthesteady-stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the helpofa differential equation.

STEADYSTATEANDTRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents and voltages in the circuit change from one state to other state. The behaviour of the voltage orcurrent when it is changedfrom one state toanotheris calledthe transient state. The time taken for the circuit to change from one steady state to another steady state is called the transient time. The application of KVL and KCL to circuits containing energy storageelementsresultsindifferential, ratherthanalgebraicequations.whenweconsidera circuit containing storage elements which are independent of the sources, the response depends upon the nature of the circuit and is called natural response. Storage elements deliver their energy to the resistances. Hence, the response changes, gets saturated after some time, and is referred to asthe transient response. When we consider a source acting on a circuit, the response depends on the nature of the source or sources.This response is called forced response. In other words, the complete response of a circuit consists of two parts; the forced response and the transient response. When we consider a differential equation, the complete solution consists of two parts: the complementary function and the particularsolution. Thecomplementaryfunctiondiesoutaftershortinterval, andisreferred to as the transient response or source free response. The particular solution is the steady state response, or the forced response. The first step in finding the complete solution of a circuit is to form a differential equation for the circuit. By obtaining the differentialequation, several methods can be used to find out the complete solution.

DCRESPONSEOFANR-LCIRCUIT

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the circuit is initially uncharged and is in series with the resistor. When the switch S is closed , we can find the complete solution for the current.Application of kirchoff's voltage law to the circuit results in the following differential equation.

Figure 1.1

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Ri}+\mathrm{L} \frac{\mathrm{~d} t}{d i} \quad \text {..1.1 }
\end{aligned}
$$

Intheabove equation, the currentl is the solution to be found and V is the applied constant voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchS isclosed.Theaboveequation is a linear differential equation of first order.comparing it with a non-homogenious differential equation
whosesolutionis
 1.4

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas

Hence, $\mathrm{i}=\mathbf{c} e^{-\frac{R}{2} t}+\ldots \ldots \ldots . .$. 1.5

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in Fig.1.1,theswitchsis closed at $\mathrm{t}=0 . \mathrm{att}=0$-,i.e.just beforeclosing theswitchs,thecurrent in the inductoriszero.Sincetheinductordoesnotallowsuddenchangesincurrents,att=o+ just after the switch is closed,the current remains zero.

> Thus att=0,i=0

Substitutingtheaboveconditioninequationc,wehave $0=$

$$
\mathrm{c}+{ }_{F}^{\psi}
$$

Substitutingthevalueofcinequationc,weget

$$
\begin{align*}
& \mathrm{i}=\frac{V}{\pi}-\frac{V}{\pi} \frac{-R T}{L} \\
& \mathrm{i}={ }^{V}\left(1-e^{\frac{-R}{2}}\right. \\
& \mathrm{i}=\mathrm{I}_{0}\left(1-\frac{\alpha{ }^{\frac{\alpha}{2}}}{L}\right)\left(\text { where } I_{Q}=\frac{W}{R}\right. \\
& \mathrm{i}=I_{o}\left(1-e^{\frac{-\pi}{\tau}}\right)\left(\text { where } \quad \tau=\text { Timeconwtion }=\frac{s}{E}\right)
\end{align*}
$$

Figure1.2
Equationdconsistsoftwoparts, thesteadystatepart $V_{0}=\mathrm{V} / \mathrm{R}$) and thetransientpart ${ }_{0} \frac{-R \operatorname{sit}}{\Sigma}$.
WhenswitchSisclosed ,theresponsereachesasteadystate valueaftera timeintervalas shown in figure 1.2.

Here the transition period isdefined as the timetaken for the current toreach its final or stedy state value from its initial value.In the transient part of the solution, the quantityL/Ris importantindescribingthecurvesinceL/Risthetimeperiodrequired for the current to reach its initial value of zero to the final value $I_{0}=\mathrm{V} / \mathrm{R}$. The time constant of a function $\int_{0} \frac{-\mathbb{R} I}{L}$ is thetimeatwhich theexponentofeisunity, wheree is the base of the natural logarithms.The term L/R is called the time constant and is denoted by τ.

$$
\text { So }, \tau={ }^{L} \mathrm{sec}
$$

Hence,thetransientpartofthesolutionis

$$
\mathrm{i}=-\frac{w^{2}}{R} e^{\frac{-n T}{L}}=\frac{v^{2}}{R}
$$

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitial value.

Similarly,

$$
\begin{aligned}
& \mathrm{i}(2 \tau)=-\frac{W}{\pi} Q^{-2}=-0.135 \frac{\pi}{\pi} \\
& \mathrm{i}(3 \tau)=-\frac{W^{2}}{\pi}-2=-0.0498 \frac{\pi}{\pi} \\
& \mathrm{i}(5 \tau)=-\frac{W}{\pi} \mathbb{Q}^{-\pi}=-0.0067 \frac{\pi}{\pi}
\end{aligned}
$$

After5TCthetransientpartreachesmorethan99percentofitsfinal value.

InfigureAwecan findoutthevoltagesandpowersacrosseachelementbyusingthecurrent.
Voltageacrosstheresistoris

$$
w_{R}=\mathrm{Ri}=\mathrm{R} \times \frac{\mathrm{T}}{n}\left(1-\frac{-N}{N}\right)
$$

Hence, $\quad v_{R}=\mathrm{V}\left(1-e^{\frac{-R}{2}}\right)$

Similarly,thevoltageacrosstheinductanceis $v_{2}=$

TheresponsesareshowninFigure1.3.

Figure1.3

Powerintheresistoris

$$
\begin{aligned}
& \frac{W^{2}}{W_{n}}\left(1-\frac{-a n i}{2}\right.
\end{aligned}
$$

Powerintheinductoris

Theresponsesareshowninfigure1.4.

Figure1.4

Problem:1.1

Figure1.5
AseriesR-LcircuitwithR=30תand $\mathrm{L}=15$ Hhasaconstant voltageV=50Vappliedatt=0as shown inFig.1.5 determinethecurrent i,thevoltageacrossresistorandacrossinductor. Solution :

ByapplyingKirchoff'svoltageLaw,we get
$15 \frac{d i}{d t}+30 \mathrm{i}=60$
$=>\frac{d}{d t}+2 \mathrm{i}=4$
Thegeneralsolutionforalineardifferentialequationis $\mathrm{i}=\mathrm{c}$
$\mathrm{e}^{-w^{2}+e^{-p t}} \int K e^{r^{2}} \mathrm{dt}$
where $\mathrm{P}=2, \mathrm{~K}=4$
puttingthe valuesi=c
$e^{-\Delta t}+e^{-2 t} \int 4 e^{2 t} d t$
$\Rightarrow \mathrm{i}=\mathrm{ce}^{-2 \mathrm{Tr}}+2$

Att=0,theswitchs isclosed.
Sincetheinductorneverallowssudden changein currents.At $t=0^{-}$thecurrent in thecircuit is zero. Therefore at $\mathrm{t}=\mathrm{D}^{+}, \mathrm{i}=0$
$\Rightarrow 0=c+2$
$\Rightarrow \mathrm{c}=-2$

Substitutingthevalueofcinthecurrentequation,wehave

$$
\begin{aligned}
& \mathrm{i}=2\left(1-\mathrm{e}^{-2 t}\right) \mathrm{A} \\
& \text { voltageacrossresistor }\left(V_{R}\right)=\mathrm{iR}=2\left(1-\mathrm{e}^{-\mathrm{t}}\right) \times 30=60\left(1-\mathrm{e}^{-2 t}\right) \mathrm{v} \\
& \text { voltageacrossinductor }\left(V_{R}\right)=\mathrm{L} \frac{a z}{d t}=15 \times \frac{\sqrt{2}}{2} 2\left(1-\mathrm{e}^{-2 t}\right)=30 \times 2 \mathrm{e}^{-2 \pi} \mathrm{v}=
\end{aligned}
$$

DCRESPONSEOFANR-CCIRCUIT

Consideracircuitconsistingofaresistanceand capacitanceasshowninfigure.The capacitorin the circuitisinitiallyunchargedandisinserieswiththeresistor. WhentheswitchSisclosed at $t=0$, we can find the complete solution for the current.Application of kirchoff's voltage law to the circuit results in the following differential equation.

Figure1.6

$$
\mathrm{V}=\mathrm{Ri}+\frac{1}{C} \int \frac{n}{6} d t .
$$1.7

Bydifferentiatingtheaboveequation, weget
$0=\mathrm{R} \quad \frac{d f}{d t}+\frac{i}{c} \mathrm{i}$
Or
$\frac{d i}{d t}+\frac{1}{k c} \mathrm{i}=0$
1.9

Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution for the above equationis zero. The solution for this type of differential equationis
$\mathrm{i}=\mathrm{Ce}^{-\left(\frac{t}{R C}\right)}$

To determine the value of c in equation c , we use the initial conditions .In the circuit shown in Fig.theswitchsisclosed att=0.Sincethecapacitordoesnot allow suddenchangesinvoltage, it will act as a short circuitat $\mathrm{t}=\mathrm{o}+$ just after the switch is closed.

Sothecurrentinthecircuit att $=0+\mathrm{is}-$ Thus at

$$
\mathrm{t}=0 \text {, the current } \mathrm{i}=\frac{p}{\square}
$$

Substitutingtheaboveconditioninequationc,wehave $=c$
Substitutingthevalueofcinequationc,weget

Figure1.7

WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The
term RCis called the time constant and is denoted by τ.

$$
\text { So }, \tau=\text { RCsec }
$$

After5 TCthecurvereaches99percentofitsfinalvalue.
InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage across the resistor is

$$
v_{R}=\mathrm{Ri}=\mathrm{R} \quad \times \frac{\mathrm{V}}{4} e^{\frac{-t}{N C}}
$$

Similarly,voltageacrossthecapacitoris v_{C}

$$
\begin{aligned}
& =\frac{1}{C} \delta d d x \\
& \quad=\frac{1}{n} \int \frac{W}{2} \frac{-6}{\pi C} d x
\end{aligned}
$$

$=-\left(\frac{W}{E C} \times R C \frac{-5}{\pi C}\right)+c$
$=-\mathrm{V} \frac{-\mathrm{BI}}{\mathrm{RI}}+\mathrm{c}$
Att=0,voltageacrosscapacitoriszero
So, $c=V$
And

$$
V_{6}=V\left(1-e^{\left.\frac{-i}{R E}\right)}\right.
$$

Theresponsesareshownin Figure1.8.

Figure1.8
Power in the resistor is

$$
=\frac{E^{2}}{E^{2}} \frac{\frac{-\pi}{\pi C}}{d i l}
$$

Powerinthecapacitoris F_{C}

$$
=\frac{V^{2}}{R}\left(8^{-\frac{2}{2}}-e^{-25}\right)
$$

Theresponsesareshowninfigure1.9.

Figure1.9

Problem:1.2

A series $\mathrm{R}-\mathrm{C}$ circuitwithR= 10Ω and $\mathrm{C}=0.1 \mathrm{~F}$ has aconstant voltageV $=20 \mathrm{~V}$ appliedatt $=0$ as shown in Fig. determine the current i, the voltage across resistor and acrosscapacitor.

Figure1.10

Solution:

ByapplyingKirchoff'svoltageLaw,we get
$10 \mathrm{i}+\frac{1}{0.1} \int \mathrm{~d} \mathrm{t}=20$
Differentiatingw.r.t.tweget
$10 \frac{d i}{d t}+\frac{1}{0:}=0$
$=>\frac{d}{d t}+\mathrm{i}=0$

Thesolutionforaboveequation is
$i=c e^{-t}$

Att=0,theswitchsisclosed.
Sincethecapacitorneverallowssuddenchangeinvoltages.Att=$\overline{0}^{+}$thecurrent inthecircuit is $\mathrm{i}=$ $\mathrm{V} / \mathrm{R}=20 / 10=2 \mathrm{~A}$
.Thereforeatt=0,i=2A
\Rightarrow the current equation isi $=2 \mathrm{e}^{-\tau}$
voltageacrossresistor $\left(W_{R}\right)=i R=2 e^{-T} \times 10=20 e^{-T v}$

DCRESPONSEOFANR-L-CCIRCUIT

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure. The capacitorand inductor inthecircuitisinitiallyunchargedandareinserieswiththe resistor. When the switch S is closed at $\mathrm{t}=0$, we can find the complete solution for the current.Application of kirchoff'svoltagelawtothecircuitresultsinthefollowingdifferential equation.

Figure1.11
$V=R i+L+\frac{1}{2} \int d d$.1 .12

Bydifferentiatingtheaboveequation, weget
$0=\mathrm{R} \frac{d t}{d t}+E e^{-}-1 d t^{2}+\frac{i}{c}=$ 1.13

Or
$d^{2}+F^{2} \operatorname{cit}^{2}+\frac{\text { 日 }}{L} \frac{1}{\omega}+\frac{1}{L c} \mathrm{i}=0$

The above equation c is a second order linear differential equation with only the complementary function. Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of differential equationis
$Z^{2}+{ }_{2}^{\text {W }} D+\frac{1}{S C}=0$
Therootsofequation1.15are
$A_{2} D_{2}=-\frac{\kappa}{2 E} \sqrt{ } \sqrt{\left(\frac{E}{L}\right)^{2}-\frac{1}{L C}}$

Byassuming $K_{1=-}{ }^{R}$ and $K_{z=} \sqrt{\left(\frac{R}{2}\right)^{2}-\frac{E}{W}}$
$D_{1}=K_{1}-K_{z}$ and $D_{2}=K_{1}-K_{2}$
Here \boldsymbol{K}_{2} maybepositive,negativeorzero.

Then,therootsareReal and Unequaland giveanoverdampedResponseasshowninfigure 1.12.

Figure1.12
Case II : K. fs Nequtive $\left(\frac{E}{5}\right)^{2} \leqslant \frac{1}{56}$
Then,therootsareComplexConjugate,andgiveanunder-dampedResponseasshownin figure1.13.

Figure1.13
Thesolutionfortheaboveequationis:i=e $\left.\operatorname{Krg}^{2} \mathrm{C}_{1} \cos \mathrm{R}_{2} t+\mathrm{C}_{2} \sin \mathrm{~K}_{2} t\right)$ Case III :
Then,thernipsaze

Figure1.14
Thesolutionfortheaboveequationis:i= $\mathrm{Kc}_{2} \mathrm{C}_{2}+\mathrm{C}_{2} t$
Problem : 1.3
AseriesR-L-CcircuitwithR=20 $2, \mathrm{~L}=0.05 \mathrm{HandC}=20 \mu$ FhasaconstantvoltageV $=100 \mathrm{~V}$ appliedatt=0asshowninFig.determinethetransient currenti.

Figure1.15

Solution:

ByapplyingKirchoff'svoltageLaw,we get

Differentiatingw.r.t.twe get
$005 s \theta_{i / 4} / d^{5}+20 \frac{d u}{d t}+\frac{1}{20 \times 10^{-6}} \mathrm{i}=0$
$\Rightarrow 0^{2} t / \operatorname{dex}^{2}+400 \quad \frac{d i}{d t}+10^{2} \mathrm{i}=0$
$=3\left(D^{2}+400 D+100^{-} \mathrm{i}=0\right.$

Therootsofequationare
$D_{2} D_{2}=-\frac{400}{2} \pm \sqrt{\left(\frac{400}{2}\right)^{2}-10^{6}}$

$$
=-200 \pm \sqrt{200)^{2}-10^{6}}
$$

$D_{1}=-200+\mathrm{j} 979.8$
$\Delta_{2}=-200-\mathrm{j} 979.8$
Thereforethecurrent
$\mathrm{i}=\mathrm{o}^{+\mathrm{K}} \mathrm{K}\left[\mathrm{C}_{\mathrm{s}} \operatorname{sog} \mathrm{K}_{2} t+\mathrm{C}_{-} \operatorname{sog} \mathrm{K}_{2} t\right]$
$\mathrm{i}=\mathrm{e}^{-20}\left[\mathrm{C}_{1} \cos 979.8 \mathrm{t}+\mathrm{C}_{2} \sin 979.8 \mathrm{t}\right] \mathrm{A}$

Att=0,theswitchs isclosed.
Sincetheinductor neverallows sudden changein currents.Att= 0^{+}thecurrent in thecircuit is zero.
Therefore at $\mathrm{t}=0^{+}, \mathrm{i}=0$
$\Rightarrow i=0=(1)\left[C_{1} \cos \theta+C_{2} \sin \theta\right]$
$=2 \mathrm{C}_{-1}=0$ andi $=e^{-2000}\left[\mathrm{C}_{2} \sin 979,8 t\right] \mathrm{A}$

Differentiatingw.r.t.twe get
$\frac{d t}{d t}=c_{0}\left[e^{-200 t g 79.8} \cos 979.8 t+0^{-200 e}(-200) \sin 979.8 t\right]$
Att $=0$,thevoltageacrosstheinductoris100V $=\mathrm{L} \frac{d^{2}}{d t}$
$=100$ or $\frac{d t}{d 6}=2000$

Thecurrentequationis

ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTE CHNIQUE

TheLaplace transform is a powerful Analytical Techniquethat is widely used to study the behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain function $f(t)$ to a frequency domain function $F(s)$ and also Inverse Laplace transformation converts the frequency domain function $F(s)$ back to a time domain function $f(t)$.
$\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{s})=\int_{-\infty}^{\infty} e^{-\mathrm{s}^{*}} \mathrm{f}(\mathrm{t}) \mathrm{dt}$. LT1
$L^{-1}\{\mathrm{~F}(\mathrm{~s})\}=\mathrm{f}(\mathrm{t})=\frac{1}{2 \pi f} \int_{-\delta}^{+\delta} F(\mathrm{~s}) e^{s t} \mathrm{~d} s$. LT2

DCRESPONSEOFANR-LCIRCUIT(LT Method)

Let usdeterminethesolutioniofthefirst order differential equationgivenbyequationAwhich is for the $D C$ response of a R-L Circuit under the zero initial conditioni.e. current is zero, $i=0$ at $t=0^{-}$ and hence $i=0$ at $t=0{ }^{H}$ in thecircuit in figure A bythe property of Inductance not allowing the current to change as switch is closed at $\mathrm{t}=0$.

FigureLT1.1

$$
V=R i+L \frac{d t}{d i} .
$$

TakingtheLaplaceTransformofbothesidesweget,

$$
\frac{w}{s}=\mathrm{RI}(\mathrm{~s})+\mathrm{L}[\mathrm{~s} \mathrm{I}(\mathrm{~s})-\mathrm{I}(0)] .
$$

$\Rightarrow \frac{2}{\frac{1}{2}}=\mathrm{RI}(\mathrm{s})+\mathrm{L}[\mathrm{s} \mathrm{I}(\mathrm{s})] \quad(\mathrm{I}(0)=0$:zeroinitialcurrent $)$
$\Rightarrow \frac{1}{2}=I(s)[R+L s]$
$\Rightarrow \mathrm{l}(\mathrm{s})=$

TakingtheLaplaceInverseTransformofbothsidesweget,

$\mathrm{i}(\mathrm{t})=\mathrm{F}^{-1} \frac{\mathrm{~W}-\mathrm{A}}{\mathrm{a}}$ (DividingthenumeratoranddenominatorbyL)
putting $\mathbb{X}=\mathscr{A} / \mathbb{E}_{\text {weget }}$

$\mathrm{i}(\mathrm{t})=K_{0}\left(1-e^{\frac{-\pi}{\tau}}\right) \quad\left(\right.$ where ${ }^{\tau}=T$ manconstant $\left.=\frac{L}{\bar{n}}\right)$
It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechnique issameas that obtained by standard differential method.

DCRESPONSEOFANR-CCIRCUIT(L.T.Method)

Similarly,
Let usdeterminethesolutioniofthefirst orderdifferential equationgivenbyequationAwhich is for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across capacitor is zero, $V_{c}=0$ att= U^{-}and hence $V_{c}=0$ at $\mathrm{t}=0^{-}$in thecircuit in figure A bytheproperty
ofcapacitancenot allowingthevoltageacrossittochangeasswitchisclosedatt=0.

FigureLT1. 2

$$
\mathrm{V}=\mathrm{Ri}+\frac{1}{\int} \int f \mathrm{~d} .
$$

TakingtheLaplaceTransformofbothsidesweget,

$$
\begin{aligned}
& \frac{s}{s}=R I(s)+-\left[\frac{1}{2}+\frac{1}{2}+(0)\right. \\
& \text { LT1.6 }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{\mathrm{i}}=\mathrm{I}(\mathrm{~s})\left[\mathrm{R}+\frac{1}{\mathrm{~d}}\right]=\mathrm{I}(\mathrm{~s})\left[\frac{\operatorname{San} \mathrm{l}}{\mathrm{Gs}}\right]
\end{aligned}
$$

TakingtheLaplaceInverseTransformofbothsidesweget,

$\mathrm{i}(\mathrm{t}) \mathrm{E}^{-1} \frac{\frac{\mathrm{LE}}{\mathrm{Mm}}}{\frac{\mathrm{m}}{\mathrm{m}} \mathrm{m}}$ (DividingthenumeratoranddenominatorbyRC)
putting $\propto=\frac{1}{R G}$ weget

$\mathrm{i}(\mathrm{t})=\frac{-\pi}{\sin }($ puttingbackthevalueof C$)$
$\mathrm{i}(\mathrm{t})=\bar{E}_{8} e^{-\mathrm{T}}\left(\right.$ where $I_{\infty}=\frac{\mathrm{W}}{W_{N}}$.
$\mathrm{i}(\mathrm{t})=I_{0} e^{\frac{-\pi}{T}} \quad \quad($ where $t=1$ the constont $=\mathrm{RC})$
It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechniquein qis same as that obtained by standard differential method in d .

DCRESPONSEOFANR-L-CCIRCUIT(L.T.Method)

FigureLT1.3
Similarly,
Let us determinethesolution iofthefirst orderdifferential equationgiven byequationA which isfortheDCresponseofa R-L-CCircuit underthezeroinitial condition i.e.theswitchsisclosed at $\mathrm{t}=0$.at $\mathrm{t}=0$-,i.e. just before closing the switch s , the current in the inductor is zero. Since the inductor does not allow sudden changes in currents, at $t=0+$ just after the switch is closed,the current remains zero.alsothevoltageacrosscapacitor iszeroi.e. $V_{c}=0$ att $=0^{-}$andhence $V_{c}=0$ att $=0^{\boldsymbol{F}}$ inthecircuitinfigurebythepropertyofcapacitancenot allowingthevoltageacross it $V_{\text {cto }}$ suddenly change as switch is closed at $t=0$.
 LT1. 9

TakingtheLaplaceTransformofbothsidesweget,

 charge)

TakingtheLaplaceInverseTransformofbothsidesweget,

$\mathrm{i}(\mathrm{t})=E \cdot 4 \frac{\frac{W Q}{N S}}{\sin }$ (DividingthenumeratoranddenominatorbyLC)

putting $\propto \subset=\frac{E}{2 L}$ तथn $\Pi=\sqrt{\frac{D}{\Delta C}}$ weget
$\left.\mathrm{i}(\mathrm{t})=E^{-1}\left(\frac{\frac{1}{4}}{y^{2}+2 x^{2}+w^{2}}\right\}^{2}\right\}$
Thedenominatorpolynomialbecomes $=\left[z^{2}-1-2 \omega s+\alpha^{2}\right]$

where, ${ }_{x}=\frac{\kappa}{n} ; \omega_{\infty}=\sqrt{\frac{1}{5}}$ and $_{\beta=}=\sqrt{\varepsilon^{2}}-\omega^{2}$
BypartialFractionexpansion,ofI(s),

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~s})=\frac{a}{3-8_{4}}+\frac{\mathrm{z}}{8-8} \\
& \mathrm{~A}=8-3 \mathrm{H}(\mathrm{~s})] \mathrm{s}= \\
& =\frac{\frac{V}{1}}{x_{2}-2_{2}} \\
& \mathrm{~B}=2-2 \mathrm{SH} \mid \mathrm{s}=\mathrm{s}: \\
& =\frac{\frac{v}{1}}{\left(8 x_{2}-B_{2}\right)}-\frac{\frac{v}{1}}{\left(2_{2}-8_{2}\right)} \\
& I(s)=\frac{\frac{1}{2}}{(5 x-5 y}\left(\frac{1}{(2-5 y)}-\frac{1}{(5-5 x)}\right)
\end{aligned}
$$

TakingtheInverseLaplaceTransform

$$
\mathrm{i}(\mathrm{t})=\mathrm{A}_{1} \sigma^{2} x^{2}+A_{2} e^{v^{2} z}
$$

Where A_{1} and A_{2} areconstantstobedeterminedand s_{1} and s_{2} aren theroots ofthe equation.
Nowdepending uponthevaluesof s_{1} and s_{2} wehavethreecasesoftheresponse. CASE I :
When the roots are Real and Unequal, it gives an over-damped response.
or
$\mathrm{i}(\mathrm{t})=\mathrm{A}_{1} z^{5 \pi}+\mathrm{A}_{2} e^{2 \pi}$
fort >0
CASEII:WhentherootsareRealandEqual,itgivesanCritically-dampedresponse.

CASEIII:WhentherootsareComplexConjugate,itgivesanunder-dampedresponse.

$$
\begin{gathered}
\frac{s}{2 L} \leq \sqrt{\frac{1}{k}} \quad \text { or } \alpha<\alpha ; \text { Inthiscase, thesolutionisgivenby } \mathrm{i}(\mathrm{t})= \\
\mathrm{A}_{1} \varepsilon^{2 \pi z}+A_{2} \theta^{s^{2} \mathrm{E}} \quad \\
\text { for } \mathrm{t}>0
\end{gathered}
$$

$$
\text { Let } \sqrt{x^{2}}-w^{2} \quad=\sqrt{-1} \sqrt{\omega^{2}-\alpha^{2} \quad=j w_{\text {and }}} \quad \mathrm{j}=\sqrt{-1} \text { and } \omega_{\mathrm{a}}=\sqrt{\omega^{2}}-\mathrm{x}^{2}
$$

Hence,

$$
\mathrm{i}(\mathrm{t})=2^{-\infty} \mathrm{m}_{2}\left(\mathrm{~A}_{2} \mathrm{e}^{2 \omega d z}+\mathrm{A}_{2} e^{-\gamma \omega d z}\right.
$$

$$
\left.\mathrm{i}(\mathrm{t})=e^{-x_{0}}\left[A_{1}+A_{Q}\right) \cos \omega_{a} t+1\left(A_{1}-A_{0}\right) \sin \omega_{a} t\right]
$$

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=e^{-\operatorname{sen}\left(\mathrm{B}_{1} \cos \omega_{d} t+\mathrm{B}_{2} \sin \omega_{d} t\right) .} \tag{LT 1.14}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{U}{U}=\sqrt{\frac{1}{U C}} \\
& \text { or } x=v ; \text { Inthiscase,thesolutionisgivenby or } \\
& i(t)=\theta^{-\pi}\left(A_{1}+H_{2} t\right) \\
& \text { fort>0 } \\
& \text { LT1.13 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{N}{a}>\sqrt{\frac{1}{\pi e}} \quad \text { or }{ }^{\alpha>}>\omega^{\infty} \text {; Inthiscase, thesolutionisgivenby } \mathrm{i}(\mathrm{t})= \\
& e^{-a \cos \left(A_{1} e^{\beta t}+A_{8} e^{-6 t}\right)} \\
& \text { LT } 1.12
\end{aligned}
$$

TWOPORTNETWORKS

Generally, any network may be represented schematically by a rectangular box. A network may be used for representing either Source orLoad, or for a variety of purposes. A pair of terminals at whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairof terminals into which energy is withdrawn ,or where the network variables may be measured .One such network having only one pair of terminals (1-1')is shown figure 1.1.

A two-port network is simply a network a network inside a black box, and the network has only two pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe output. Such a building block is very common in electronic systems, communication system, transmission and distribution system. fig 1.1 shows a two-port network, or two terminal pair network, in which the four terminals have been paired into ports 1-1' and 2-2'. The terminals 1-1' togetherconstituteaport.Similarly,theterminals2-2'constituteanother port.Twoportscontaining nosources in their branches are calledpassive ports ; among them are power transmissionlines and transformers. Two ports containing source in their branches are called active ports. A voltage and currentassigned to each of the two ports. The voltageand current at the input terminals are V_{1} and I_{1}; where as V_{2} and $I_{\text {are }}$ are entering into the network are V_{1}, V_{2}, and I_{1}, I_{2}. Two of these are dependent variable, the other two are indepent variable. The number of possible combinations generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing a two-port network.

OPENCIRCUITIMPEDANCE(Z)PARAMETERS

Agenerallineartwo-portnetworkisshownbelowinfigure1.2.
Thezparametersofa two-portnetworkfor thepositivedirectionofvoltagesandcurrents maybe definedbyexpressingtheportvoltages V_{1} and V_{2} intermsofthecurrents I_{1} and I_{2}.Here V_{1} and V_{2} aretwo dependentvariables and I_{1} and I_{-}are two independent variables.

Figure1.2
Thevoltageatport1-1'istheresponseproducedbythetwocurrents I_{1} and I_{2}. thus

$$
\begin{align*}
& V_{1}=Z_{12} I_{1}+Z_{12} L_{2} \\
& 1.1 \\
& v_{2}=Z_{21} H_{1}+Z_{22} F_{2}
\end{align*}
$$

$\mathbb{Z}_{15} \mathbb{Z}_{12} \mathbb{Z}_{\text {II }}$ meli \mathbb{Z}_{22} arethenetworkfunctions,andarecalledimpedance(Z)parameters,andare defined by equations1.1 and 1.2 .

Theseparametersalsocanberepresentedby Matrices. We
may write the matrix equation $[\mathrm{V}]=[\mathrm{Z}][\mathrm{I}]$
whereVisthecolumnmatrix $=\left[\begin{array}{l}\text { 相 } \\ \text { in }\end{array}\right] \mathrm{Z}$ is a
square matrix $=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & \bar{Z}_{22}\end{array}\right]$

$\left.V_{2}^{V_{2}}\right]=\left[\begin{array}{ll}Z_{01} & Z_{12} \\ \Sigma_{01} & \Sigma_{02}\end{array}\right]$
TheindividualZparametersforagivennetworkcanbedefinedbysettingeachofthe portcurrents equal tozero. suppose port2-2' is left open circuited, then $I_{z}=0$.

Thus $Z_{11}=\left.\frac{V_{4}}{b_{1}}\right|_{5}={ }^{4}$ where

Zus the drifing point impedance at port 1 - 1 with port 2 -

$Z_{21}=\frac{W_{1}}{E_{2}} E_{2}=0$
where
\mathbb{Z}_{21} ts the transfer impedanceat port 1 - 1 uth port2-
2 open circuited. It is called the open dreut forward mansfer impedance

Supposeport1-1'isleftopencircuited, then $I_{1}=0$.
Thus, $\left.\quad \Xi_{12}=\frac{k_{6}}{v_{0}} \right\rvert\, t_{1}=0$
where
Z_{12} tsthe tranfer impedmec at port $2-2^{\circ}$ with port 1 -
1 pepen clrculted. It fecalled the open circult reverge transfer impedance
similarly,

$$
\left.z_{22}=\frac{F_{2}}{b} \right\rvert\, E_{1}=0
$$

where
 1 open circuiteci It is also called the open civouit outyut impedance
.Theequivalentcircuitofthetwo-portnetworksgovernedbytheequations 1.1and 1.2,i.e.open circuit impedance parameters as shown below in fig 1.3.

Figure1.3

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple $=\mathbb{Q}$
$\frac{\mathrm{K}}{2}=\frac{H_{4}}{4} 4=0$
or
$Z_{21}=Z_{14}$
It is observed that all the parameters have the dimensions of impedance. Moreover, individual parametersarespecifiedonlywhenthecurrentinone ofthe portsiszero. Thiscorresponds toone of the ports being open circuited from which the Z parameters also derive the name open circuit impedance parameters.

Problem1.1

FindtheZparametersforthe circuitshowninFigure1.4

Figure1.4
SolutionThecircuitintheproblemisaTnetwork.FromEqs16.1and16.2wehave

$$
Y_{1}=Z_{11} I_{1}+Z_{2 x} I_{0} \quad \text { and } V_{2}=Z_{21} I_{1}+Z_{22} I_{2}
$$

When port $b-b^{\prime}$ is open circuited,

$$
Z_{14}=\frac{v_{1}}{I_{1}}
$$

Wherela $=J_{1}\left(z_{\pi}+z_{2}\right)$

$$
\therefore Z_{11}=\left(Z_{\pi}+z_{2}\right)
$$

$\left.E_{21}=\frac{V_{2}}{E_{4}} \right\rvert\, I_{2}=0$
Where $\quad V_{0}=I_{1} E_{z} \quad \therefore E_{21}=E_{5}$
When port a-a' is open circuited, $l_{1}=0$
$Z_{z=}=\frac{E_{0}}{E_{2}} l_{1}=0$
where $V_{B}=I_{4}\left(Z_{c}+Z_{c}\right)$
$Z_{22}=\left(Z_{p}+Z_{q}\right)$
$Z_{2 z}=\frac{e_{4}}{E_{1}} I_{4}=0$
where $\quad V_{1}=I_{2} E_{k}$ and $E_{12}=Z_{E}$
Itcanbeobservedthat $Z_{12}=Z_{21}$, sothenetworkisabilateral networkwhichsatisfiesthe principle of reciprocity.

SHORT-CIRCUITADMITTANCE(Y)PARAMETERS

Figure 1.5
Ageneraltwo-portnetworkwhichisconsideredinSection16.2isshown inFig16.5TheY parameters of a two- port for the positive directions of voltages and currents may be defined by expressingtheportcurrents I_{1} and I_{2} intermsofthevoltages V_{1} and V_{2}. Here V_{1}, V_{2} aredependent variables and V_{1} and V_{2} are independentvariables. I_{1} may be considered tobe the superpositionof two components, one caused by 1 and the other by

Thus,

I_{1}	$=M_{11} I_{1}+I_{12} V_{2} \ldots \ldots . ~$
1.3	

$Y_{11}, F_{12} Y_{\text {ILand }} Y_{22}$ arethenetworknetworkfunctionsandarealsocalledtheadmittance
(Y)parameters.TheyaredefinedbyEqs16.3and16.4. Theseparameterscanberepresented by matrices as follows

$$
[I]=[\mathrm{Y}][\mathrm{V}]
$$

wherel $=\left[\begin{array}{ll}I_{1} \\ I_{2}\end{array}\right] ; Y=\left[\begin{array}{ll}I_{11} & I_{12} \\ \Gamma_{21} & I_{2}\end{array}\right]$ and $V=\left[\begin{array}{l}Y_{1} \\ V_{2}\end{array}\right]$ Thus,

TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltagetozero. Ifwelet V _bezerobyshortcircuitingport2-2'then
$\left.W_{12}=\frac{J_{2}}{V_{2}} \right\rvert\, T_{2}=0$
I_ $_{\text {II }}$ isthedrivingpointadmittanceatport1-1', withport 2-2' short circuited.Itisalsocalledthe shortcircuitinputadmittance.
$\left.\mathrm{I}_{21}=\frac{\nu_{2}}{w_{g}} \right\rvert\, Y_{a}=0$
IKıisthetransferadmittanceatport1-1', withport 2-2' shortcircuited.Itisalsocalledtheshort circuitedforwardtransferadmittance.Ifwelet \mathbb{V}_{1} bezerobyshortcircuitingport1-1',then

Y_{12} is the transfer admittance atport2-2', withport1-1'shortcircuited. Itis alsocalledthe short circuitedreversetransferadmittance.
$\left.\mathrm{I}_{22}=\frac{\mathrm{I}_{2}}{x_{2}} \right\rvert\, \mathrm{V}_{\mathrm{I}}=0$
${ }^{1 / 2}{ }^{2}$ zistheshortcircuitdriving pointadmittanceat port 2-2', withport1-1' short circuited. Itisalso calledtheshortcircuited outputadmittance.Theequivalentcircuitofthenetworkgovernedby equation 1.3 \& 1.4 is shown in figure 1.6.

Figure 1.6
Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple $\mathbb{F}_{1}=\mathbb{U}$
$\frac{s_{2}}{w_{2}} \quad=\frac{k_{2}}{v_{2}} \pi_{2}=0$
or
$Y_{12}=Y$ Y

It is observed that all the parameters have the dimensions of admittance. Moreover, individual parametersarespecifiedonlywhenthe voltageinoneofthe portsiszero. Thiscorresponds toone of the ports being short circuited from which the Y parameters also derive the name short circuit admittance parameters.

Problem1.2FindtheY-parametersforthenetworkshowninFig.1.7

Fig1.7

Solution:

$\left.\mathrm{I}_{\mathrm{TI}}=\frac{\mathrm{D}_{2}}{W_{2}} \right\rvert\,{ }_{\mathrm{F}}^{2}=0$
Whenb-bisshortcircuited, $\mathbb{V}_{2}=$ OandthenetworklooksasshowninFig.1.8(a)

Fig.1.8(a)
$V_{1}=I_{1} Z_{9 x}$
$Z_{8, ~}=2 \Omega$
So, $V_{1}=I_{1} 2$
$I_{14}=\frac{I_{2}}{Y_{2}} W_{W_{2}}=0=\frac{I_{1}}{V_{1}}=\frac{1}{2}$
$\left.I_{1}=\frac{\lambda_{2}}{W_{6}} \right\rvert\, T:=0$

Whenb-b'isshortcircuited, $-I_{2}=I_{1} X-=\quad \begin{array}{ll}2 & I_{1} \\ 4\end{array}$
so, $-\mathrm{I}_{2}=\frac{V_{1}}{4}$
and $\left.Y_{21}=\frac{Y_{2}}{F_{8}} \right\rvert\, V_{2}=0=-\frac{1}{4}$
similarly, whenporta-a a^{*} isshortcircuited, $\mathbb{V}=0$ andthenetworklooksasshowninFig. 1.8(b)

$\left.N_{22}=\frac{T_{2}}{W_{8}} \right\rvert\, W_{1}=0$
$V_{2}=I_{2} Z_{\text {eq }} w h e r e Z_{\text {eq }}$ istheequivalentimpedanceasviewedfromb-b". $Z_{\text {eq }}=$
$\frac{8}{8} 4$
$V_{2}=I_{2} \times \frac{8}{8}$
$\left.I_{22}=\frac{T_{2}}{W_{8}} \right\rvert\, W_{1}=0=\frac{5}{8}$
$W_{12}=\frac{y_{a}}{W_{8}} W_{1}=0$
witha-a'isshortcircuited, $-\mathrm{I}_{\mathrm{I}}=\frac{2}{5} \mathrm{I}_{2}$ Since,
$I_{2}=5 \frac{W_{2}}{0}$
$-I_{1}=x_{2} \frac{v_{3}}{8}=\quad N_{2}$
So, $\overline{1}_{12}=\frac{1_{1} 1}{=}$

Thedescribingequationsintermsoftyeadmittanceparametersare
$V_{2}=\frac{1}{2} V_{1}+\frac{1}{4} V_{2}$
$I_{2}=-\frac{1}{4} V_{1}+\frac{5}{6} V_{2}$

Transmission(ABCD)parameters

Figure1.9
Transmission parameters or ABCD parameters are widely used in transmission line theory and cascadednetworks.Indescribingthetransmissionparameters, theinputvariables V_{1} and Γ_{1} atport 1-1', usually calledthesending end areexpressed intermsof the output variables V_{1} and z_{z} at port 2-2', called, the receiving end. The transmission parameters provide a direct relationship between input and output.Transmissionpatameters are also called general circuit parameters, or chain nparameters. They are defined by

$$
\begin{aligned}
& W_{1}=A V_{2}-E I_{2} \\
& 1.5 \\
& \left.L_{2}=C V_{2}-D\right)_{2} \\
& \text {.1.6 }
\end{aligned}
$$

Thenegativesignisusedwith \mathcal{I}_{2}, andnotfortheparameterBandD.Boththeportcurrents I_{1} and $I_{\text {are }}$ directed to the right, i.e. with a negative sign in equation a and b the currents at port 2-2' which leaves the port is designated as positive. The parameters A, B, C and d are called Transmission parameters. In the matrix form, equation a and b are expressed as,

Thematrix $\quad\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]$ is called Transmission Matrix.

Foragivennetwork, theseparameterscanbedeterminedasfollows.Withport2-2'opencircuited i.e. $1_{2}=0 ;$ applyingavoltage \mathbb{V}_{1} attheport1-1', usingequa, wehave

1/Aiscalledtheopencircuitvoltagegainadimensionlessparameter.And $\left.{ }^{2}=\frac{V_{2}}{I_{1}} \right\rvert\, i_{2}=0=Z_{24}\| \|_{2}$
$=0$ is called open circuit transfer impedance. with port 2-2' short circuited, i.e. $\mathbb{V}_{2}=0$, applying voltage $V_{\text {fat }}$ port 1-1' from equn . b we have

$$
\left.-B=\frac{w_{4}}{\mathrm{~J}_{2}} \right\rvert\, V_{2}=0 \text { and } \left.-D=\frac{\mathrm{I}_{2}}{\mathrm{I}_{2}} \right\rvert\, \hat{v}_{2}=0
$$

$-\frac{\partial}{H}=\frac{I_{z}}{V_{2}}\left|V_{2}=0=F_{2 L}\right| I_{2}=$ Oiscalledshortcircuittransferadmittance
and,
$-\frac{1}{\mathrm{D}}=\left.\frac{I_{\mathrm{E}}}{I_{1}}\right|_{\mathbb{E}}=0=\mathbb{W}_{\mathrm{Z}} \|_{Y_{2}}=$ Oiscalledshortcircuitcurrentgainadimensionlessparameter.
Problem1.3
FindthetransmissionorgeneralcircuitparametersforthecircuitshowninFig.1.10

Fig.1.10

Solution:FromEquations1.5and1.6, wehave
$W_{1}=A K_{2}-B L_{2}$
$\mathrm{K}-\mathrm{EV}_{2}-\mathrm{DJ}$
whenb-b'isopencircuitedi.e. $1_{2}=0$, wehave $A=$
$\frac{w_{0}}{v_{0}}=0$
where $\mathbb{V}_{1}=6 I_{1}$ and $V_{2}=5 I_{1}$ andhence, $A=\frac{6}{8}$ axd $C=$
$\stackrel{I_{2}}{\underline{n}} I_{2}=0=\frac{1}{-}$
whenb-b'isshortcircuitedi.e. $V_{2}=0$, wehave $B=-$
$\frac{V_{6}}{2_{8}} T_{2}=0_{\text {and }}=-\left.\frac{y_{6}}{y_{8}}\right|_{2}=0$
Inthecircuit, $-\mathrm{I}_{2}=\frac{\Delta}{2} W_{1}$ andso, $\mathrm{B}=\frac{18}{8} a$
similarly, $\mathrm{I}_{1}=\frac{\gamma}{17} \mathrm{~V}_{1}$ and $-\mathrm{L}_{2}=\frac{b}{17} \mathrm{~V}$ and
hence $D=\quad \pi$
3

Hybridparameters

Hybridparametersorh-parametersfindextensiveuseintransistorcircuits.Theyarewell suitedto transistor circuits as these parameters can be most conveniently measured. The hybrid matrices describeatwo-portnetwork,whenthevoltageofone portand thecurrentof otherportare taken as the independent variables. Consider the network in figure 1.11.

Ifthevoltageatport1-1'andcurrentatport2-2'are takenasdependentvariables,wecan expressthemintermsofl 1_{1} and V_{2}.
$V_{1}=h_{11} I_{4}+h_{12} V_{2}$ 1.7

Thecoefficientintheabovetermsarecalledhybridparameters.Inmatrixnotation $\left[\begin{array}{l}V_{\mathbb{I}_{2}}\end{array}\right]=$

$\left.\cdot M_{11} \quad h_{2-1} \quad h_{20}\right]\left[\begin{array}{l}h_{2} \\ h_{2}\end{array}\right]$

Figure1.11
fromequationaandbtheindividualhparametersmaybedefinedbyletting $l_{1}=U_{a n d} V_{2}=0$. when $V_{2}=$
0, theport 2-2' is short circuited.
Then $\left.h_{L_{1}}=\frac{v_{i}}{l_{4}} \right\rvert\, v_{:=0}=$ shortcircuitinputimpedance. $b_{n_{1}}=$
$\left.\frac{J_{B}}{y_{1}} \right\rvert\, \vartheta_{2}=0=$ short circuit forward current gain Similarly,
by letting port 1-1' open, $l_{k}=0$
$b_{2}=\frac{V_{8}}{W_{i}} I_{1}=0=$ opencircuitreversevoltagegain
$\boldsymbol{h}_{2 a}=\frac{X_{8}}{Y_{g}} \|_{\mathbf{I}}=0=$ opencircuitedoutputadmittance

Since h-parameters represent dimensionally an impedance, an admittance, a voltage gain and a currentgain,theyarecalledhybridparameters.Anequivalentcircuitofatwo-portnetworkin terms of hybrid parameters is shown below.

Figure1.12

Problem1.4

Findtheh-parameters ofthenetworkshowninFig1.13.

Fig.1.13
Solution :

Fromequations1.7and1.8, wehave

Ifportb-b isshortcircuited, $\mathbb{V}_{z}=0 a n d$ thenetworklooksasshowninFig.1.14(a)

Fig.1.14(a)
$b_{21}=\frac{v_{2}}{v_{6}} v_{2}=0 ; v_{1}=v_{1} 2 z_{8 q}$
$Z_{z=1}$ istheequivalentimpedanceasviewedfromporta- a^{\prime} is 2Ω
so, $V_{1}=I_{1} 2 \mathrm{~V} \mathrm{~B}_{\text {HI }}$
$=\frac{V_{2}}{I_{1}}=2 \Omega$
$\left.D_{21}=\frac{D_{2}}{x_{2}} \right\rvert\, v_{2}=0$ when $v_{2}=0 ;-I_{2}=\frac{1_{4}}{2}$ andhence $\mathbb{I}_{21}=-\frac{1}{2}$

Ifporta- $\mathbb{Q}^{\text {is isopencircuited, } \mathcal{l}_{1}=\text { OandthenetworklooksasshowninFig.1.14(b)then }}$

Fig.1.14(b)
$\left.b_{12}=\frac{V_{8}}{V_{2}} \right\rvert\,{ }_{I}=$ gand $V_{1}=1_{5} 2 ; 1_{y}=\frac{V_{2}}{2} V_{2}=$
$\mathrm{J}_{3} 4 ; \mathrm{J}_{x}=$ $\frac{5}{2}$

INTERRELATIONSHIPSOFDIFFERENTPARAMETERS

ExpressionofzparametersintermsofYparametersandvice-versa

From equations $1.1,1.2,1.3 \& 1.4$, it is easy to derive the relation between the open circuit impedanceparametersandtheshortcircuitadmittanceparametersby meansoftwo matrix equationsof the respective parameters. By solving equation a and b for I_{1} and I_{2}, we get

where Δ_{z} is the determinant of Z matrix

comparingequations1.9and1.10withequations1.3and1.4wehave
$\Psi_{11}=\frac{z_{22}}{\Delta_{2}} ; \cdot{ }_{12}=-\frac{z_{12}}{\Delta_{2}}$

Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving equations1.3and 1.4 for V_{1} and V_{2}
$\mathrm{V}_{1}=\left[\begin{array}{ll}\mathrm{I}_{1} & \mathrm{I}_{12} \\ \mathrm{I}_{2} & \mathrm{~F}_{22}\end{array}\right] \mathrm{B}_{y} \quad ;$ and $\mathrm{V}_{2}=\left[\begin{array}{ll}\mathrm{I}_{11} & \mathrm{I}_{\mathrm{I}_{2}} \\ \mathrm{I}_{24} & \mathrm{I}_{2}\end{array}\right] / \mathrm{B}_{2}$
where Δ_{y} is the determinant of Y matrix

$$
B_{y}=\left[\begin{array}{ll}
I_{1 n} & I_{12} \\
T_{n} & I_{n}
\end{array}\right]
$$

$1.11 \mathrm{~V}_{2}=-\frac{\mathrm{V}_{\mathrm{zx}}}{\mathrm{V}_{\mathrm{y}}}$
$\mathrm{I}_{1}+\frac{\mathrm{Y}_{\text {s1 }}}{\Delta_{\mathrm{y}}} \mathrm{I}_{2}$.1 .12
comparingequations1.11and1.12withequations1.1and1.2wehave

$$
\begin{aligned}
& z_{11}=\frac{\gamma_{5 x}}{\Delta_{y}} ; y_{12}=-\frac{\gamma_{n}}{\Delta_{V}} \\
& z_{21}=-\frac{\gamma_{m}}{\Delta_{V}} ; z_{22}=\frac{\gamma_{m}}{\Delta_{V}}
\end{aligned}
$$

GeneralCircuitParametersor ABCD Parameters inTermsofZparametersand Y
 Parameters

Weknow that
$V_{1}=A V V_{0}-B E_{2} ; \quad V_{1}=Z_{11} F_{1}-E_{12} E_{2} ; \quad I_{1}=F_{11} V_{1}+I_{12} V_{2}$
$\mathrm{I}_{2}=\mathrm{CV}-D \mathrm{~V}_{2} ; \mathrm{F}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2} \quad ; \quad \mathrm{I}_{2}=\mathrm{I}_{21} \mathrm{I}_{1}+\mathrm{I}_{25} \mathrm{~V}_{2}$

Substitutingthecondition $1_{2}=0$ inequations1.1and1.2weget $\left.A=\frac{P}{+1} \right\rvert\,$
$V_{8}=\frac{V_{M K}}{V_{\mathrm{K}}}$

Substitutingthecondition $\mathrm{I}_{2}=$ Oinequations1.4weget,
$A=\frac{F_{t}}{Y_{0}} l_{0}=U=\frac{Y_{z x}}{Y_{2 I}}$
Substitutingthecondition $I_{2}=0$ inequations1.2weget $\mathrm{C}=$
$\frac{I_{2}}{V} \left\lvert\, l_{2}=0=\frac{1}{E-x}\right.$
 the determinant of the admittance matrix

$$
\frac{x_{0}}{x_{0}} F_{3}=0 \quad=\frac{-y_{y}}{x_{n}}=C
$$

Substitutingthecondition $\mathbb{V}_{2}=$ Oinequations1.4, weget

$$
\frac{V_{2}}{1_{1}} \left\lvert\, V_{2}=0=-\frac{1}{Y_{21}}=B\right.
$$

 the determinant of theimpedance matrix

$$
-\quad \frac{V_{0}}{B_{0}} V_{0}=0 \quad=\frac{Q_{z}}{Z_{n}}=B
$$

Substitutingthecondition $V_{z}=0$ inequation1.2weget,

$$
\frac{-1_{2}}{J_{0}} \left\lvert\, v_{2}=0 \quad=\frac{v_{w_{x}}}{W_{\mathrm{xu}}}=D\right.
$$

Substitutingthecondition $V_{2}=0$ inequations1.3and1.4 we get

$$
\begin{aligned}
& \quad=\frac{-\mathrm{Y}_{2}}{\mathrm{~W}}=\mathrm{D} \\
& \left.\frac{\mathrm{~m}_{2}}{\mathrm{l}_{2}} \right\rvert\, W_{2}=0
\end{aligned}
$$

T andrepresentation

A two-port network with any number of elementsmay be converted into a two-port threeelement network. Thus, a two-port network may be represented by an equivalent Tnetwork,i.e.threeimpedances areconnectedtogetherintheformofa Tasshowninfigure 1.15.

Figure1.15
ItispossibletoexpresstheelementsoftheT-networkintermofZ parameters,orABCD parametersasexplainedbelow.

Zparametersofthe network

$$
\begin{aligned}
& \left.Z_{11}=\frac{V_{a}}{I_{1}} \right\rvert\, I_{2}=0 \quad=Z_{a}+Z_{a} \\
& \left.Z_{21}=\frac{W_{2}}{I_{n}} \right\rvert\, I_{2}=0=Z_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left.Z_{V 2}=\frac{W_{R}}{I_{B}} \right\rvert\, I_{I}=0 \quad=Z_{B}+Z_{C E} \\
& Z_{I n}=\frac{W_{s}}{I_{1}} \| I_{1}=0 \quad=Z_{c}
\end{aligned}
$$

Fromtheaboverelations,itisclearthat

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\mathrm{Z}_{11}-\mathrm{Z}_{\mathrm{Z1}} \\
& \mathrm{Z}_{\mathrm{b}}=\mathrm{Z}_{22}-\mathrm{Z}_{22} \\
& \mathrm{Z}_{\mathrm{c}}=\mathrm{Z}_{12}-\mathrm{Z}_{\mathrm{R}}
\end{aligned}
$$

ABCDparametersofthe network
$A=\frac{T_{9}}{T_{9}} \left\lvert\, I_{I_{2}}=0 \quad=\frac{Z_{9}+g_{9}}{Z_{5}}\right.$
$\left.B=\frac{-v_{2}}{v_{2}} \right\rvert\, v_{2}=0$
When2-2 isshortcircuited

$B=\left(Z_{\pi}+Z_{z}\right)+\frac{Z_{2} Z_{b}}{Z_{6}}$
$C=\frac{D_{k}}{V_{g}} \left\lvert\, I_{2}=0 \quad=\frac{1}{Z_{z}}\right.$
$D=\frac{-\lambda_{2}}{\lambda_{2}} y_{2}=0$
When2-2 ${ }^{i}$ isshortcircuited
$-I_{2}=I_{1} \frac{z_{1}}{Z_{2}+Z_{i}} D$
$=\frac{\bar{\omega}_{6}+\Sigma_{8}}{Z_{a}}$
Fromtheaboverelationswecanobtain Z_{a}
$={ }^{A-1}+Z_{b}=\frac{\nu-1}{G} ; Z_{c}=\frac{}{c}$

Problem:1.6

TheZparametersofaTwo-portnetworkare $Z_{11}=100, Z_{12}=15 \Omega_{D} Z_{12}=Z_{21}=5 \Omega$.
FindtheequivalentTnetworkandABCDParameters.

Solution :

TheequivalentTnetworkisshowninFigure1.16 where Z_{a}
$=Z_{M 1}-Z_{21}=5 \Omega$
$Z_{3}=Z_{22}-Z_{12}=10 \Omega$
and $Z_{c}=5 \Omega$

TheABCDparametersofthenetworkare A =
$\frac{Z_{G}}{Z_{s}}+1=2 ; B=\left(Z_{e}+Z_{z i}\right)+\frac{Z_{s} Z_{s}}{Z_{s}}=25 \Omega$
$\mathrm{C}=\frac{1}{U_{\mathrm{c}}}=0.02 ; \mathrm{D}=1+\frac{\frac{\mathrm{m}_{\mathrm{c}}}{\mathrm{E}_{v}}}{}=3$

In a similar way a two-port network may be represented by an equivalent - network, i.e. three impedances or admittances are connected together in the form of as shown in Fig 1.17.

Fig. 1.16
Fig.1.17

Itispossibletoexpresstheelementsofther-networkintermsofYparametersor ABCD parametersasexplainedbelow.

Y-parametersofthenetwork
$\left.W_{11}=\frac{M_{k}}{W_{d}} \right\rvert\, W_{2}=0=Y_{1}+Y_{2}$
$\left.I_{I I}=\frac{p_{2}}{W_{2}} \right\rvert\, V_{s}=0 \quad=-V_{2}$

$\left.W_{2}=\frac{Y_{g}}{W_{I}} \right\rvert\, W_{1}=0=-Y_{2}$
Fromtheaboverelations, itisclearthat $\mathrm{Y}_{1}=$
$T_{11}+P_{12}$
$Y_{2}=-\Gamma_{12}$
$Y_{3}=Y_{24}+Y_{21}$
WritingABCDparametersintermsofYparametersyieldsthefollowingresults.

$B=\frac{-4}{Y_{2}}=\frac{1}{Y:}$
$C=\frac{-x_{x}}{\gamma_{x}}=Y_{1}+Y_{3}+\frac{Y_{0} W_{5}}{Y_{i}}$
$\mathrm{D}=\frac{-Y_{y_{4}}}{X_{\mathrm{in}}}=\frac{Y_{8}+X_{4}}{Y_{5}}$
fromtheaboveresults,weobtain
$Y_{1}=\frac{D-1}{5} ; Y_{2}=\frac{1}{B} ; Y_{3}=$
$\frac{4-1}{3}$
\qquad ...xxxxxxxxxxxxxxxxxxxxx

CLASSIFICATIONOFFILTERS

Afilterisareactivenetworkthatfreely passesthedesiredbandoffrequencieswhilealmost totally suppressing all other bands. A filter is constructed from purely reactive elements, for otherwise the attenuation would never becomeszero in the pass band of thefilter network.
Filters differ from simple resonant circuit in providing a substantially constant transmission over the band which they accept; this band may lie between any limits depending on the design. Ideally, filters should produce no attenuation in the desired band, called the transmissionbandorpassband,andshould providetotal orinfiniteattenuationatallother frequencies, called attenuation band or stop band. The frequency which separates the transmissionbandandtheattenuationbandisdefinedasthecut-offfrequency ofthewave filters, and is designated by $f c$

Filter networks are widely used in communication systems to separate various voice channels in carrier frequency telephone circuits. Filters also find applications in instrumentation, telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of frequencies. A filter may, in principle, have any number of pass bands separated by attenuation bands. However,theyareclassifiedintofourcommontypes,viz.lowpass,highpass,bandpassand band elimination.

Decibelandneper

The attenuation of a wave filter can be expressed in decibels or nepers. Neper is defined as the naturallogarithmoftheratioof inputvoltage(or current)to the outputvoltage(orcurrent), provide that the network is properly terminated in its characteristic impedance Z_{0}.

Fig.9.1(a)

From fig. 9.1 (a) the number of nepers, $N=\log$ e $\left[V_{1 /} V_{2}\right]$ or $\log _{e}\left[I_{1 / 2} I_{2}\right]$. A neper can also be expressed in terms of input power, P_{1} and the output power P_{2} as $\mathrm{N}=1 / 2 \log _{e} \mathrm{P}_{1} / \mathrm{P}_{2}$. A decibel is definedastentimesthecommonlogarithmsoftheratiooftheinputpowertotheoutputpower.

DecibelD=10 $\log _{10} \mathrm{P}_{1} / \mathrm{P}_{2}$

Thedecibelcanbeexpressedintermsof theratioof inputvoltage(orcurrent) andthe output voltage (or current.)
$D=20 \log _{10}\left[\mathrm{~V}_{1} / \mathrm{V}_{2}\right]=20 \log _{10}\left[\mathrm{I}_{1} / \mathrm{I}_{2}\right]$
*Onedecibelisequalto0.115 N.

LowPassFilter

Bydefinitionalowpass(LP)filterisonewhichpasseswithoutattenuationallfrequencies up to the cut-off frequency f_{c}, and attenuates all otherfrequenciesgreaterthan f_{c}. The attenuation characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies from zero up to the cut-off frequency. The band is called pass band or transmission band.Thus, the pass bandfortheLP filter is thefrequencyrange 0 to f_{c}. Thefrequencyrange overwhichtransmissiondoesnottakeplaceiscalledthestopband orattenuationband. Thestop band for a LP filter is the frequency range above f_{c}.

Fig.9.1(b)

HighPassFilter

A high pass (HP) filter attenuates all frequencies belowa designated cut-off frequency, f_{c}, and passesallfrequenciesabove f_{c}. Thusthepassbandof thisfilteristhefrequencyrangeabove f_{c}, and thestop bandisthefrequencyrangebelow f_{c}. Theattenuationcharacteristicof aHP filterisshown in fig.9.1 (b).

BandPassFilter

A band pass filter passes frequencies between two designated cut-off frequencies and attenuatesallotherfrequencies.ItisabbreviatedasBPfilter.Asshowninfig.9.1(b),aBPfilterhas twocut-offfrequenciesandwillhavethepassband $f_{2}-f_{1} ; f_{1}$ iscalledthelowercut-off frequency, while f_{2} is called the upper cut-off frequency.

BandEliminationfilter

Abandeliminationfilterpassesallfrequencieslyingoutsideacertain range, whileitattenuates all frequencies between the two designated frequencies. It is also referred as band stop filter. The characteristic of an ideal band elimination filter is shown in fig.9.1 (b).All frequencies between f_{1} and f_{2} will be attenuatedwhilefrequencies below f_{1} andabove f_{2} will be passed.

FILTERNETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be satisfied if the elements of the filter are dissipationless. which cannot be realized in practice. Filters aredesignedwithanassumptionthattheelementsof thefiltersarepurelyreactive.Filtersaremade of symmetrical T, or π section. Tand π section can be considered as combination of unsymmetrical L sections as shown in Fig.9.2.

Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade connection ofseveralTand rsections constitutesaladdernetwork.Acommonformofthe ladder network is shown in Fig.9.3.

Figure9.3(a)representsaTsectionladdernetwork,whereasFig.9.3(b)representsther section laddernetwork.Itcanbeobservedthatbothnetworksareidenticalexceptattheends.

Fig. 9.3

EQUATIONSOFFILTERNETWORKS

Thestudyofthebehaviorofanyfilterrequiresthecalculationofitspropagationconstanty, attenuation α, phaseshift β anditscharacteristicimpedance Z_{0}.

T-Network

ConsiderasymmetricalT-networkasshowninFig. 9.4.

Fig.9.4
If the image impedances at port 1-1' and port 2-2' are equal to each other ,the image impedanceisthencalledthecharacteristic,ortheiterativeimpedance, Z . Thus, ifthenetworkin Fig.9.4is terminated in Z_{0}, its inputimpedance will alsobe Z_{0}. The value of input impedance for the T-network when it is terminated in Z_{0} is given by

$$
\begin{aligned}
& Z_{\text {in }}=\frac{Z_{1}}{2}+\frac{Z_{2}\left(\frac{Z_{1}}{2}+Z_{0}\right)}{\frac{Z_{1}}{2}+Z_{2}+Z_{0}} \\
& \text { also } \\
& Z_{\text {in }}=Z_{o} \\
& \therefore \quad Z_{0}=\frac{Z_{1}}{2}+\frac{2 Z_{2}\left(\frac{Z_{1}}{2}+Z_{0}\right)}{Z_{1}+2 Z_{2}+2 Z_{0}} \\
& Z_{0}=\frac{Z_{1}}{2}+\frac{\left(Z_{1} Z_{2}+2 Z_{2} Z_{0}\right)}{Z_{1}+2 Z_{2}+2 Z_{0}} \\
& Z_{0}=\frac{Z_{1}^{2}+2 Z_{1} Z_{2}+2 Z_{1} Z_{0}+2 Z_{1} Z_{2}+4 Z_{0} Z_{2}}{2\left(Z_{1}+2 Z_{2}+2 Z_{0}\right)} \\
& 4 Z_{0}^{2}=Z_{1}^{2}+4 Z_{1} Z_{2} \\
& Z_{0}^{2}=\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2}
\end{aligned}
$$

ThecharacteristicimpedanceofasymmetricalT-sectionis

$$
\begin{equation*}
Z_{\mathrm{OT}}=\sqrt{\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2}} \tag{9.1}
\end{equation*}
$$

$Z_{0 T}$ canalsobeexpressedintermsofopen circuitimpedance $Z_{o c a n d s h o r t c i r c u i t i m p e d a n c e ~} Z_{\text {sc }}$ of the T - network. From Fig. 9.4, the open circuit impedance $Z_{o c}=Z_{1} / 2+Z_{2}$ and

$$
\begin{align*}
Z_{s c} & =\frac{Z_{1}}{2}+\frac{\frac{Z_{1}}{2} \times Z_{2}}{\frac{Z_{1}}{2}+Z_{2}} \\
Z_{s c} & =\frac{Z_{1}^{2}+4 Z_{1} Z_{2}}{2 Z_{1}+4 Z_{2}} \\
Z_{\mathrm{O} c} \times Z_{s c} & =Z_{1} Z_{2}+\frac{Z_{1}^{2}}{4} \\
& =Z_{\mathrm{o} T}^{2} \quad \text { or } \quad Z_{\mathrm{o} T}=\sqrt{Z_{\mathrm{Oc}} Z_{s c}} \tag{9.2}
\end{align*}
$$

PropagationConstantofT-Network

Bydefinitationthepropagationconstant OofthenetworkinFig.9.5isgivenby $Y=\log _{e} 1_{1} / I_{2}$

Writingthemeshequationforthe2ndmesh, we get

Fig.9.5

$$
\begin{align*}
& I_{1} Z_{2}=I_{2}\left(\frac{Z_{1}}{2}+Z_{2}+Z_{0}\right) \\
& \frac{I_{1}}{I_{2}}=\frac{\frac{Z_{1}}{2}+Z_{2}+Z_{0}}{Z_{2}}=e^{\gamma} \\
& \therefore \quad \\
& \frac{Z_{1}}{2}+Z_{2}+Z_{0}=Z_{2} e^{\gamma} \tag{9.3}\\
& Z_{0}=
\end{align*}
$$

ThecharacteristicimpedanceofaT-networkisgivenby

$$
\begin{equation*}
Z_{\mathrm{OT}}=\sqrt{\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2}} \tag{9.4}
\end{equation*}
$$

[^0]\[

$$
\begin{array}{r}
Z_{2}^{2}\left(e^{\gamma}-1\right)^{2}+\frac{Z_{1}^{2}}{4}-Z_{1} Z_{2}\left(e^{\gamma}-1\right)-\frac{Z_{1}^{2}}{4}-Z_{1} Z_{2}=0 \\
Z_{2}^{2}\left(e^{\gamma}-1\right)^{2}-Z_{1} Z_{2}\left(1+e^{\gamma}-1\right)=0 \\
Z_{2}^{2}\left(e^{\gamma}-1\right)^{2}-Z_{1} Z_{2} e^{\gamma}=0 \\
Z_{2}\left(e^{\gamma}-1\right)^{2}-Z_{1} e^{\gamma}=0
\end{array}
$$
\]

$$
\begin{aligned}
\left(e^{\gamma}-1\right)^{2} & =\frac{Z_{1} e^{\gamma}}{Z_{2}} \\
e^{2 \gamma}+1-2 e^{\gamma} & =\frac{Z_{1}}{Z_{2} e^{-\gamma}}
\end{aligned}
$$

Rearrangingtheaboveequation, wehave

$$
\begin{array}{r}
e^{-\gamma}\left(e^{2 \gamma}+1-2 e^{\gamma}\right)=\frac{Z_{1}}{Z_{2}} \\
\left(e^{\gamma}+e^{-\gamma}-2\right)=\frac{Z_{1}}{Z_{2}}
\end{array}
$$

Dividingbothsidesby2, we have

$$
\begin{array}{r}
\frac{e^{\gamma}+e^{-\gamma}}{2}=1+\frac{Z_{1}}{2 Z_{2}} \\
\cosh \gamma=1+\frac{Z_{1}}{2 Z_{2}}
\end{array}
$$

(9.5)

Stillanotherexpressionmayobtainedforthecomplexpropagationconstantintermsof thehyperbolic tangent rather than hyperbolic cosine.
$\sinh \gamma=\sqrt{\cos h^{2} \gamma-1}$

$$
\begin{align*}
& =\sqrt{\left(1+\frac{Z_{1}}{2 Z_{2}}\right)^{2}-1}=\sqrt{\frac{Z_{1}}{Z_{1}}+\left(\frac{Z_{1}}{2 Z_{2}}\right)^{2}} \\
\sinh \gamma & =\frac{1}{Z_{2}} \sqrt{Z_{1} Z_{2}+\frac{Z_{1}^{2}}{4}}=\frac{Z_{0 T}}{Z_{2}} \tag{9.6}
\end{align*}
$$

DividingEq.9.6byEq.9.5,Weget

$$
\tanh y=\frac{Z_{O T}}{Z_{2}+\frac{Z_{1}}{2}}
$$

But

$$
Z_{2}+\frac{Z_{1}}{2}=Z_{0 c}
$$

AlsofromEq. 9.2,

$$
\begin{align*}
& \begin{aligned}
Z_{\mathrm{OT}} & =\sqrt{Z_{\mathrm{Oc}} Z_{s c}} \\
\tanh \gamma & =\sqrt{\frac{Z_{s c}}{Z_{\mathrm{Oc}}}}
\end{aligned} \\
& \text { Also } \begin{aligned}
\sinh \frac{\gamma}{2} & =\sqrt{\frac{1}{2}(\cosh \gamma-1)} \\
\text { Where } \cosh \gamma & =1+\left(Z_{1} / 2 Z_{2}\right)
\end{aligned} \\
&
\end{align*}
$$

π - Network

Considerasymmetricalл-sectionshowninFig.9.6.WhenthenetworkisterminatedinZ ${ }_{0}$ atport2 -2 'itsinputimpedanceisgivenby

Fig.9.6

$$
Z_{\mathrm{in}}=\frac{2 Z_{2}\left[z_{1}+\frac{2 Z_{2} Z_{0}}{2 Z_{2}+Z_{0}}\right]}{Z_{1}+\frac{2 Z_{2} Z_{0}}{2 Z_{2}+Z_{0}}+2 Z_{2}}
$$

By definition of characteristic

 impedance, $Z_{\text {in }}=Z_{0}$$$
Z_{0}=\frac{2 Z_{2}\left[Z_{1}+\frac{2 Z_{2} Z_{0}}{2 Z_{2}+Z_{0}}\right]}{Z_{1}+\frac{2 Z_{2} Z_{0}}{2 Z_{2}+Z_{0}}+2 Z_{2}}
$$

$$
\begin{aligned}
Z_{0} Z_{1}+\frac{2 Z_{2} Z_{0}^{2}}{2 Z_{2}+Z_{0}}+2 Z_{0} Z_{2} & =\frac{2 Z_{2}\left(2 Z_{1} Z_{2}+Z_{0} Z_{1}+2 Z_{0} Z_{2}\right)}{\left(2 Z_{2}+Z_{0}\right)} \\
2 Z_{0} Z_{1} Z_{2}+Z_{1} Z_{0}^{2}+2 Z_{0}^{2} Z_{2} & +4 Z_{2}^{2} Z_{0}+2 Z_{2} Z_{0}^{2} \\
& =4 Z_{1} Z_{2}^{2}+2 Z_{0} Z_{1} Z_{2}+4 Z_{0} Z_{2}^{2} \\
Z_{1} Z_{0}^{2}+4 Z_{2} Z_{0}^{2} & =4 Z_{1} Z_{2}^{2} \\
Z_{0}^{2}\left(Z_{1}+4 Z_{2}\right) & =4 Z_{1} Z_{2}^{2} \\
Z_{0}^{2} & =\frac{4 Z_{1} Z_{2}^{2}}{Z_{1}+4 Z_{2}}
\end{aligned}
$$

Rearranging the above equation leads to

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{Z_{1} Z_{2}}{1+Z_{1} / 4 Z_{2}}} \tag{9.8}
\end{equation*}
$$

which is the characteristic impedance of a symmetrical π-network,

$$
Z_{0 \pi}=\frac{Z_{1} Z_{2}}{\sqrt{Z_{1} Z_{2}+Z_{1}^{2} / 4}}
$$

FromEq.9.1

$$
\begin{align*}
& z_{\mathrm{O} T}=\sqrt{\frac{z_{1}^{2}}{4}+Z_{1} z_{2}} \\
\therefore \quad & z_{\mathrm{O} \pi}=\frac{z_{1} z_{2}}{z_{\mathrm{o} T}} \tag{9.9}
\end{align*}
$$

$Z_{0_{\pi}}$ canbeexpressedintermsof theopen circuitimpedance Z ocandshortcircuitimpedance $Z_{\text {scof }}$ the π network shown in Fig.9.6 exclusive of the load Z_{0}.

FromFig.9.6, theinputimpedanceatport1-1 whenport2-2 'isopenisgiven by
$Z_{0 C}=\frac{2 Z_{2}\left(Z_{1}+2 Z_{2}\right)}{Z_{1}+4 Z_{2}}$

Similarly,theinputimpedanceatport1-1' whenport2-2'isshortcircuitisgivenby

$$
Z_{s c}=\frac{2 Z_{1} Z_{2}}{2 Z_{2}+Z_{1}}
$$

Hence $\quad Z_{0 c} \times Z_{s c}=\frac{4 Z_{1} Z_{2}^{2}}{Z_{1}+4 Z_{2}}=\frac{Z_{1} Z_{2}}{1+Z_{1} / 4 Z_{2}}$
ThusfromEq.9.8

$$
\begin{equation*}
Z_{\mathrm{o} \pi}=\sqrt{Z_{\mathrm{oc}} Z_{\mathrm{sc}}} \tag{9.10}
\end{equation*}
$$

PropagationConstantofn-Network

Thepropagationconstantofasymmetricalr-section isthesameasthatforasymmetricalTSection.
i.e. $\quad \cosh \gamma=1+\frac{Z_{1}}{2 Z_{2}}$

CLASSIFICATION OFPASSBAND AND STOP BAND

Itispossibletoverifythecharacteristicsoffiltersfrom thepropagationconstantofthe network.The propagation constant y, being a function of frequency, the pass band, stop band and the cut-off point,i.e.thepointofseparationbetweenthe twobands,canbeidentified.ForsymmetricalTor π - section, the expression for propagation constant Y in terms of the hyperbolic functions is given by Eqs 9.5 and 9.7 in section 9.3. From Eq.9.7, $\sin \mathrm{h} \mathrm{Y} / 2=\mathrm{V}\left(\mathrm{Z}_{1} / 4 \mathrm{Z}_{2}\right)$.

IfZ ${ }_{1}$ andZ Z_{2} arebothpureimaginaryvalues,theirratio, andhence $Z_{1} / 4 Z_{2}$, willbeapurereal number. Since Z_{1} and Z_{2} may be anywhere in the range from - j_{α} to $+j_{\alpha}, Z_{1} / 4 Z_{2}$ may also have any
realvaluebetweentheinfinitelimits.ThensinhY/2= $V_{Z} / \sqrt{ } 4 Z_{2}$ willalsohaveinfinitelimits, but may be either real or imaginary depending upon whether $Z_{1} / 4 Z_{2}$ is positive or negative.

Weknowthat thepropagationconstant isacomplexfunctiony $=\alpha+j \beta$, the real partof the complexpropagationconstant α,isameasureofthe changeinmagnitudeofthecurrentor voltage in the network ,known as the attenuation constant . β is a measure of the difference in phase betweentheinputandoutputcurrentsorvoltages.KnownasphaseshiftconstantTherefore $\alpha a n d \beta$ takeondifferentvaluesdependingupontheofZ $Z_{1} / 4 Z_{2}$.FromEq.9.7,Wehave

$$
\begin{align*}
\sinh \frac{\gamma}{2} & =\sinh \left(\frac{\alpha}{2}+\frac{j \beta}{2}\right)=\sinh \frac{\alpha}{2} \cos \frac{\beta}{2}+j \cosh \frac{\alpha}{2} \sin \frac{\beta}{2} \\
& =\sqrt{\frac{Z_{1}}{4 Z_{2}}} \tag{9.11}
\end{align*}
$$

CaseA

IfZ Z_{1} and Z_{2} arethesametypeofreactances, then $\left[Z_{1} / 4 Z_{2}\right]$ isrealandequaltosay $\alpha+x$.
TheimaginarypartoftheEq.9.11mustbezero.

$$
\begin{equation*}
\therefore \quad \cosh \frac{\alpha}{2} \sin \frac{\beta}{2}=0 \tag{9.12}
\end{equation*}
$$

$$
\begin{equation*}
\sinh \frac{\alpha}{2} \cos \frac{\beta}{2}=x \tag{9.13}
\end{equation*}
$$

$\alpha a n d \beta$ mustsatisfyboththeabove equations.
Equation9.12canbesatisfiedif $\beta / 2=0$ orn π, wheren $=0,1,2, \ldots .$. ,then $\cos \beta / 2=1$ andsinh $\alpha / 2=x$ $=V\left(Z_{1} / 4 Z_{2}\right)$

Thatxshouldbealwayspositiveimplies that

$\left|\frac{Z_{1}}{4 L_{2}}\right|>0$ and $\alpha=2 \sinh ^{-1} \sqrt{\frac{L_{1}}{4 Z_{2}}}$

Since $\alpha \neq 0$, itindicatesthattheattenuationexists.

CaseB

Considerthecaseof Z_{1} and Z_{2} beingoppositetypeofreactances,i.e. $Z_{1} / 4 Z_{2}$ isnegative, making $V Z_{1} /$ $4 Z_{2}$ imaginary and equal to say Jx
*TherealpartoftheEq.9.11mustbezero.

$$
\begin{equation*}
\cosh \frac{\alpha}{2} \sin \frac{\beta}{2}=x \tag{9.15}
\end{equation*}
$$

Boththeequationsmustbesatisfiedsimultaneouslybyaand β.Equation 9.15 maybesatisfied when $\alpha=$ 0 , or when $\beta=\pi$. These conditions are considered separately hereunder
(i) When $\alpha=0$;fromEq. 9.15 , $\sinh \alpha / 2=0$.andfromEq. $9.16 \sin \beta / 2=x=v\left(Z_{1} / 4 Z_{2}\right)$.Butthe sinecanhave a maximum value of 1 . Therefore, the above solutionis valid only for negative $Z_{1} / 4 Z_{2}$,andhavingmaximumvalueofunity.Itindicatestheconditionofpassbandwithzeroattenuation and follows the condition as

$$
\begin{align*}
-1 & \leq \frac{Z_{1}}{4 Z_{2}} \leq 0 \\
\beta & =2 \sin ^{-1} \sqrt{\frac{Z_{1}}{4 Z_{2}}} \tag{9.17}
\end{align*}
$$

(ii) When $\beta=\pi$, fromEq. $9.15, \cos \beta / 2=0$.AndfromEq. $9.16, \sin \beta / 2= \pm 1 ; \cosh \alpha / 2=x=V\left(Z_{1} / 4 Z_{2}\right)$

Sincecosh $\alpha / 2 \geq 1$,thissolutionisvalidfornegative $Z_{1} / 4 Z_{2}$, and , than, or equal to unity. It indicates the condition of stop band since $\alpha \neq 0$.

$$
\begin{align*}
-\alpha & \leq \frac{Z_{1}}{4 Z_{2}} \leq-1 \\
\alpha & =2 \cosh ^{-1} \sqrt{\frac{Z_{1}}{4 Z_{2}}} \tag{9.18}
\end{align*}
$$

It can be observed that there are three limits for case A and B. Knowing the values of Z_{1} and Z_{2}, it is possible to determine the case to be applied to the filter. Z_{1} and Z_{2} are made of different types of reactances, or combinations of reactances, so that, as the frequency changes, a filtermaypassfromonecasetoanother.CaseAand(ii)incaseBareattenuation bands, whereas(i) in case B is the transmission band.

Thefrequencywhichseparatestheattenuationbandfrompassbandorviceversais called cut-off frequency. The cut-off frequency is denoted by f_{c}, and is also termed as nominal frequency.SinceZoisrealinthepassbandandimaginaryinanattenuationband, f_{c} isthefrequency at which Z_{0} changes from being real to being imaginary. These frequencies occur at

$$
\begin{align*}
& \frac{Z_{1}}{4 Z_{2}}=\mathrm{o} \text { or } Z_{1}=\mathrm{o} \tag{a}\\
& \frac{Z_{1}}{4 Z_{2}}=-1 \text { or } Z_{1}+4 Z_{2}=0 \tag{b}
\end{align*}
$$

Theaboveconditionscanberepresentedgraphically,asinFig.9.7.

Fig. 9.7

CHARACTERISTIC
 IMPEDANCEIN THE PASS AND STOP BANDS

ReferringtothecharacteristicimpedanceofasymmetricalT-network,fromEq.9.1We have

$$
Z_{0 T}=\sqrt{\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2}}=\sqrt{Z_{1} Z_{2}\left(1+\frac{Z_{1}}{4 Z_{2}}\right)}
$$

If Z_{1} and Z_{2} arepurelyreactive, let $Z_{1}=\mathrm{jx}_{1}$ and $Z_{2}=\mathrm{j} \mathrm{x}_{2}$, then

$Z_{0 T}=\sqrt{-x_{1} x_{2}\left(1+\frac{x_{1}}{4 x_{2}}\right)}$

(9.19)

Apassbandexistswhenx x_{1} and x_{2} areofoppositereactancesand

$$
-1<\frac{x_{1}}{4 x_{2}}<0
$$

Substituting these conditions in Eq. 9.19, we find that $Z_{\text {otis }}$ positive and real. Now consider thestop band.Astopbandexistswhen x_{1} and x_{2} are of thesametypeofreactances; then $x_{1} / 4 x_{2}>0$. Substituting these conditions in Eq. 9.19, we find that Z otis parley imaginary in this attenuation region. Another stopbandexists when x_{1} and ${ }_{2}$ are of the same type of reactances, outwith $x_{1} / 4 x_{2}$ <-1.ThenfromEq.9.19, Z Zттisagainpurlyimaginaryintheattenuationregion.

Thus, in a pass band if a network is terminated in a pure resistance $\mathrm{R}_{\mathrm{o}}\left(\mathrm{Z}_{\mathrm{OT}}=\mathrm{R}_{\mathrm{O}}\right)$, the input impedanceisRoandthenetwork transmitsthepower receivedfromthesourcetotheRowithout any attenuation. In a stop band $Z_{\text {от is }}$ reactive. Therefore, if the network is terminated in a pure reactance ($Z_{0}=$ pure reactance), the input impedance is reactive, and cannot receive or transmit power. However, the network transmits voltage and current with 90° phase difference and with attenuation.Ithasalreadybeenshownthatthecharacteristicsimpedanceofasymmetrical π sectioncanbeexpressedintermsofT.Thus,fromEq.9.9, $Z_{0 \pi}=Z_{1} Z_{2} / Z_{0 T}$.

Since Z_{1} and $_{2}{ }_{2}$ arepurelyreactive,$Z_{o \pi}$ is real, if Z $Z_{\text {отisreal }}$ and $Z_{0 x}$ isimaginaryifZ $Z_{o т i s}$ imaginary. Thus the conditions developed for T - section are valid for π - sections.

CONSTANT-KLOWPASSFILTER

Anetwork, eitherTorr, issaidtobe oftheconstant- ktypeifZ $_{1}$ and $_{2}$ ofthenetworksatisfythe relation

$$
\begin{equation*}
Z_{1} Z_{2}=k^{2} \tag{9.20}
\end{equation*}
$$

Where Z_{1} and Z_{2} are impedance in the T and π sections as shown in Fig.9.8.Equation 9.20 states that Z_{1} and Z_{2} are inverse if their product is a constant, independent of frequency. K is a real constantthatistheresistance.kisoften termedasdesignimpedanceornominalimpedanceofthe constant k -filter.

Theconstantk,Torntypefilterisalsoknownasthe prototypebecauseothermorecomplex network can be derived from it. A prototype T and $\pi-$ section are shown in

Fig.9.8
Fig.9.8(a)and(b), where $Z_{1}=j \omega_{\text {Land }} Z_{2}=1 / j \omega c$. Hence $Z_{1} Z_{2}=L / C=k^{2}$ whichis independent of frequency.

$$
\begin{equation*}
Z_{1} Z_{2}=k^{2}=\frac{L}{C} \quad \text { or } \quad k=\sqrt{\frac{L}{C}} \tag{9.21}
\end{equation*}
$$

Sincetheproduct Z_{1} and Z_{2} isconstant,thefilterisaconstant-ktype.FromEq.9.18(a)the cut-offfrequenciesare $Z_{1} / 4 Z_{2}=0$,
ie.

$$
\frac{-\omega^{2} L C}{4}=0
$$

i.e. $f=0$ and $\frac{Z_{1}}{4 Z_{2}}=-1$

$$
\begin{align*}
\frac{-\omega^{2} L C}{4} & =-1 \tag{9.22}\\
f_{c} & =\frac{1}{\pi \sqrt{L C}}
\end{align*}
$$

The pass band can be determined graphically. The reactances of Z_{1} and $4 Z_{2}$ will vary with frequencyasdrawninFig.9.9.Thecut-offfrequencyat theintersectionof thecurves Z_{1} and-4z 2 is indicated as f. On the X - axis as $Z_{1}=-4 Z_{2}$ at cut-off frequency, the pass band lies between the frequencies at which $Z_{1}=0$, and $Z_{1}=-4 Z_{2}$.

Fig.9.9
Allthefrequenciesabovefclieinastoporattenuationband,thus,the networkiscalleda lowpassfilter.WealsohavefromEq.9.7that

$$
\sinh \frac{\gamma}{2}=\sqrt{\frac{Z_{1}}{4 Z_{2}}}=\sqrt{\frac{-\omega^{2} L C}{4}}=\frac{J \omega \sqrt{L C}}{2}
$$

FromEq.9.22

$$
\begin{aligned}
\sqrt{L C} & =\frac{1}{f_{c} \pi} \\
\therefore \quad \sinh \frac{\gamma}{2}=\frac{j 2 \pi f}{2 \pi f_{c}} & =j \frac{f}{f_{c}}
\end{aligned}
$$

We also know that in the pass band

$$
\begin{array}{r}
-1<\frac{Z_{1}}{4 Z_{2}}<0 \\
-1<\frac{-\omega^{2} L C}{4}<0 \\
-1<-\left(\frac{f}{f_{c}}\right)^{2}<0
\end{array}
$$

or

$$
\frac{f}{f_{c}}<1
$$

and

$$
\beta=2 \sin ^{-1}\left(\frac{f}{f_{c}}\right) ; \alpha=0
$$

In the attenuation band,

$$
\begin{aligned}
\frac{Z_{1}}{4 Z_{2}} & <-1, \text { i.e. } \frac{f}{f_{c}}<1 \\
\alpha & =2 \cosh ^{-1}\left[\frac{Z_{1}}{4 Z_{2}}\right]=2 \cosh ^{-1}\left(\frac{f}{f_{c}}\right) ; \beta=\pi
\end{aligned}
$$

Theplotsofaand β forpassandstopbandsareshowninFig.9.10

Thus,fromFig.9.10, $\alpha=0, \beta=2 \sinh ^{-1}\left(f / f_{\mathrm{c}}\right)$ for $f<f_{\mathrm{c}}$
$\alpha=2 \cosh ^{-1}\left(f / f_{\mathrm{c}}\right) ; \beta=\pi f \circ r f>f_{\mathrm{c}}$

Fig.9.10
Thecharacteristicsimpedancecanbecalculatedasfollows

$$
\begin{align*}
Z_{\mathrm{OT}} & =\sqrt{Z_{1} Z_{2}\left(1+\frac{Z_{1}}{4 Z_{2}}\right)} \\
& =\sqrt{\frac{L}{C}\left(1-\frac{\omega^{2} L C}{4}\right)} \\
Z_{\mathrm{OT}} & =k \sqrt{1-\left(\frac{f}{f_{C}}\right)^{2}} \tag{9.23}
\end{align*}
$$

From Eq.9.23, Z Zotis rael when $f<f_{c}$, i.e.in the pass band at $f=f_{c}, Z_{\text {от }}$; and for $f>f_{c}, Z_{\text {от }}$ is imaginaryintheattenuationband,risingtoinfinitereactanceatinfinitefrequency. Thevariationof $Z_{o т} w i t h$ frequency is shown in Fig.9.11

Fig.9.11
Similarly,thecharacteristicsimpedanceofar-networkisgivenby

$$
\begin{equation*}
Z_{\mathrm{o} \pi}=\frac{Z_{1} Z_{2}}{Z_{\mathrm{o} T}}=\frac{k}{\sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}} \tag{9.24}
\end{equation*}
$$

The variation of Z $_{\text {or }}$ with frequency is shown in Fig.9.11. For $f<f_{c}, Z_{\text {оп }}$ is real ; at $f=f_{c}, Z_{o r i s}$ infinite, andforf $\neg f f_{c}, Z_{o r}$ isimaginary.Alowpassfiltercanbedesignedfromthespecificationsof cut-off frequency and load resistance.

$$
\text { Atcut-offfrequency, } Z_{1}=-4 Z_{2}
$$

$$
\begin{aligned}
j \omega_{c} L & =\frac{-4}{j \omega_{c} C} \\
\pi^{2} f_{c}^{2} L C & =1
\end{aligned}
$$

Also we know that $k=\sqrt{L / C}$ is called the design impedance or the load resistance

$$
\therefore \quad \begin{aligned}
k^{2} & =\frac{L}{C} \\
\pi^{2} f_{c}^{2} k^{2} C^{2} & =1
\end{aligned}
$$

$C=\frac{1}{\pi f_{c} k}$ gives the value of the shunt capacitance and $L=k^{2} C=\frac{k}{\pi f_{c}}$ gives the value of the series inductance.

Example9.1.

Designalowpassfilter(bothrandT-sections)havingacut-offfrequencyof 2 kHz to operate with a terminated load resistance of 500Ω .solution.Itisgiventhat $k=V(L / C)=500 \Omega, a n d f_{c}=2000 \mathrm{~Hz}$ we
know that

$$
\begin{aligned}
& \mathrm{L}=k / \pi f_{\mathrm{c}}=500 / 3.14 \times 2000=79.6 \mathrm{mH} \\
& \mathrm{C}=1 / \pi f_{c} k=1 / 3.14 .2000 .500=0.318 \mu \mathrm{~F}
\end{aligned}
$$

TheTand π-sectionsofthisfilterareshowninFig.9.12(a)and(b)respectively.

Fig.9.12

CONSTANTK-HIGHPASSFILTER

Constant K - high pass filter can be obtained by changing the positions of series and shunt arms of thenetworksshowninFig.9.8.TheprototypehighpassfiltersareshowninFig.9.13,whereZ ${ }_{1}=-j / \omega_{c} a n d Z_{2}=$ $j \omega L$.

Fig.9.13
Again,itcanbeobservedthattheproductof $Z_{1} a n d Z_{2}$ isindependentoffrequency, andthe filter design obtained will be of the constantk type. Thus, $Z_{1} Z_{2}$ are given by

$$
\begin{aligned}
Z_{1} Z_{2} & =\frac{-j}{\omega C} j \omega L=\frac{L}{C}=k^{2} \\
k & =\sqrt{\frac{L}{C}}
\end{aligned}
$$

Thecut-offfrequenciesaregivenby $Z_{1}=0$ and $Z_{2}=-4 Z_{2}$.

$$
\mathrm{Z}_{1}=0 \text { indicatesj} / \omega \mathrm{C}=0, \text { or } \omega \rightarrow \alpha
$$

FromZ ${ }_{1}=-4 Z_{2}$

$$
\begin{gathered}
-j / \omega C=-4 j \omega L \\
\omega^{2} L C=1 / 4
\end{gathered}
$$

0r

$$
f_{c}=\frac{1}{4 \pi \sqrt{L C}}
$$

Thereactancesof Z_{1} and Z_{2} aresketchedasfunctionsoffrequencyasshowninFig.9.14.

Fig.9.14

AsseenfromFig.9.14,thefiltertransmitsallfrequenciesbetween $f=f_{c}$ and $f=\alpha$. Thepoint f_{c} fromthegraphisapointatwhich $Z_{1}=-4 Z_{2}$. From

Eq.9.7,

$$
\sinh \frac{\gamma}{2}=\sqrt{\frac{Z_{1}}{4 Z_{2}}}=\sqrt{\frac{-1}{4 \omega^{2} L C}}
$$

FromEq.9.25,

$$
\begin{array}{ll}
& f_{c}=\frac{1}{4 \pi \sqrt{L C}} \\
\therefore \quad \sqrt{L C}=\frac{1}{4 \pi f_{c}} \\
\therefore & \sinh \frac{\gamma}{2}=\sqrt{\frac{-(4 \pi)^{2}\left(f_{c}\right)^{2}}{4 \omega}}=j \frac{f_{c}}{f^{2}}
\end{array}
$$

Inthepassband, $-1<Z_{1} / 4 Z_{2}<0, \alpha=0$ ortheregioninwhich $f_{c} / f<1$ isapassband $\beta=2 \sin ^{-1}\left(f_{c} / f\right.$)

Intheattenuationband $Z_{1} / 4 Z_{2}<-1$,i.e. $f{ }_{c} / f>1$

$$
\begin{aligned}
& \alpha=2 \cosh ^{-1}\left[Z_{1} / 4 Z_{2}\right] \\
= & 2 \cos ^{-1}\left(f_{c} / f\right) ; \beta=-\pi
\end{aligned}
$$

Fig.9.15
Theplotsof $\alpha a n d \beta$ forpassandstopbandsofahighpassfilternetworkareshowninFig.9.15.
Ahighpassfiltermaybe designedsimilartothelowpassfilterbychoosingaresistiveload requalto the constant k, such that $R=k=V L / C$

$$
\begin{aligned}
& f_{c}=\frac{1}{4 \pi \sqrt{L / C}} \\
& f_{c}=\frac{k}{4 \pi L}=\frac{1}{4 \pi C k}
\end{aligned}
$$

Since

$$
\begin{aligned}
\sqrt{C} & =\frac{L}{k} \\
L & =\frac{k}{4 \pi f_{c}} \text { and } C=\frac{1}{4 \pi f_{c} k}
\end{aligned}
$$

Thecharacteristicimpedancecanbecalculatedusingtherelation

$$
\begin{aligned}
& Z_{\mathrm{o} T}=\sqrt{Z_{1} Z_{2}\left(1+\frac{Z_{1}}{4 Z_{2}}\right)}=\sqrt{\frac{L}{C}\left(1-\frac{1}{4 \omega^{2} L C}\right)} \\
& Z_{\mathrm{o} T}=k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}
\end{aligned}
$$

Similarly,thecharacteristicimpedanceofar-networkisgivenby

Fig.9.16
TheplotofcharacteristicimpedanceswithrespecttofrequencyisshowninFig.9.16.

Example9.2.

of600 Ω.

Solution. Itisgiventhat $R_{L}=K=600 \Omega$ and $f_{c}=1000 H z L=K$

$$
\begin{aligned}
& / 4 \pi f_{c}=600 / 4 \times \pi \times 1000=47.74 \mathrm{mH} \\
& C=1 / 4 \pi k f_{c}=1 / 4 \pi \times 600 \times 1000=0.133 \mu \mathrm{~F}
\end{aligned}
$$

TheTandr-sectionsofthefilterareshowninFig.9.17.

Fig.9.17

m-DERIVEDT-SECTIONFILTER

ItisclearfromFigs.9.10and9.15thattheattenuation isnotsharpinthe stop bandfor k-typefilters. The characteristic impedance, Z_{0} is a function of frequency and varies widely in the transmission band. Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or more identical sections. In order to join the filter sections, it would be necessary that their characteristic impedances be equal to each other at all frequencies. If their characteristic impedances match at all frequencies, they would also have the same pass band .However, cascading is not a proper solution from a practical point of view .

This is because practical elements have a certain resistance, which gives rise to attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by cascading also results in an increase of ' α ' in the pass band .If the constant k section is regarded as the prototype, it is possible to design a filter to have rapid attenuation in the stop band, and the samecharacteristicimpedanceastheprototypeatallfrequencies.Suchafilteriscalledm-derived filter.SupposeaprototypeT -networkshown inFig.9.18(a)hastheseriesarmmodifiedasshownin Fig.9.18 (b) , where m is a constant . Equating the characteristic impedance of the networks in Fig.9.18, we have

Fig.9.18

$$
\mathrm{Z}_{\mathrm{OT}}=\mathrm{Z}_{\mathrm{OT}}{ }^{\prime}
$$

WhereZ ${ }_{\text {or, }}$ isthecharacteristicimpedanceofthemodified(m -derived)T-network.

$$
\begin{align*}
\sqrt{\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2}} & =\sqrt{\frac{m^{2} Z_{1}^{2}}{4}+m Z_{1} Z_{2}^{\prime}} \\
\frac{Z_{1}^{2}}{4}+Z_{1} Z_{2} & =\frac{m^{2} Z_{1}^{2}}{4}+m Z_{1} Z_{2}^{\prime} \\
m Z_{1} Z_{2}^{\prime} & =\frac{Z_{1}^{2}}{4}\left(1-m^{2}\right)+Z_{1} Z_{2} \\
Z_{2}^{\prime} & =\frac{Z_{1}}{4 m}\left(1-m^{2}\right)+\frac{Z_{2}}{m} \tag{9.27}
\end{align*}
$$

ItappearsthattheshuntarmZ ${ }_{2}$ consistsoftwoimpedancesinseriesasshowninFig.9.19.

Fig.9.19
 -derivedsectioncanbeobtainedfromtheprototypebymodifyingitsseriesand shunt arms .The same technique can be applied to π section network. Suppose a prototype π - network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).

Fig. 9.20

$$
Z_{0 \pi}=Z^{\prime} \quad 0_{\pi}
$$

WhereZ ${ }_{0 \pi}{ }^{\pi}$ isthecharacteristicimpedanceofthemodified(m-derived) π-network.

$$
\therefore \sqrt{\frac{Z_{1} Z_{2}}{1+\frac{Z_{1}}{4 Z_{2}}}}=\sqrt{\frac{Z_{1}^{\prime} \frac{Z_{2}}{m}}{1+\frac{Z_{1}^{\prime}}{4 \cdot Z_{2} / m}}}
$$

Squaringandcrossmultiplyingtheaboveequationresultsasunder.

$$
\begin{align*}
& \qquad\left(4 Z_{1} Z_{2}+m Z_{1}^{\prime} Z_{1}\right)=\frac{4 Z_{1}^{\prime} Z_{2}+Z_{1} Z_{1}^{\prime}}{m} \\
& Z_{1}^{\prime}\left(\frac{Z_{1}}{m}+\frac{4 Z_{2}}{m}-m Z_{1}\right)=4 Z_{1} Z_{2} \\
& \text { or } \quad Z_{1}^{\prime}=\frac{Z_{1} Z_{2}}{\frac{Z_{1}}{4 m}+\frac{Z_{2}}{m}-\frac{m Z_{1}}{4}} \\
& =\frac{Z_{1} Z_{2}}{\frac{Z_{2}}{m}+\frac{Z_{1}}{4 m}\left(1-m^{2}\right)} \\
& Z_{1}^{\prime}=\frac{Z_{1} Z_{2} \frac{4 m^{2}}{\left(1-m^{2}\right)}}{\frac{Z_{2} 4 m^{2}}{m\left(1-m^{2}\right)}+Z_{1} m}=\frac{m Z_{1} \frac{Z_{2} 4 m}{\left(1-m^{2}\right)}}{m Z_{1}+\frac{Z_{2} 4 m}{\left(1-m^{2}\right)}}
\end{align*}
$$

Itappearsthattheseriesarmofthem - derivedrsectionisaparallelcombinationof $m Z_{1}$ and $4 m Z_{2} / 1$ $-m^{2}$. The derived m section is shown in Fig.9.21.

m-Derived LowPassFilter

InFig.9.22,bothm-derivedlowpassTand π filtersectionsareshown.For the T-section shownin Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency f_{α} above cut-off frequency f_{c}.

If the shuntarm is series resonant ,its impedance willie minimum or zero. Therefore , the outputiszeroandwillcorrespondtoinfiniteattenuationatthisparticularfrequency.Thus,at f_{α}
$1 / m \omega_{r} C=1-m^{2} / 4 m \omega_{r} L$, where ω_{r} istheresonantfrequency

Fig.9.21

Fig. 9.22

$$
\begin{aligned}
\omega_{r}^{2} & =\frac{4}{\left(1-m^{2}\right) L C} \\
f_{r} & =\frac{1}{\pi \sqrt{L C\left(1-m^{2}\right)}}=f_{\propto}
\end{aligned}
$$

Sincethecut-offfrequencyforthelowpassfilteris $f_{c}=1 / \pi V$ LC

$$
f_{\propto}=\frac{f_{c}}{\sqrt{1-m^{2}}}
$$

(9.29)

$$
\begin{equation*}
\text { or } \quad m=\sqrt{1-\left(\frac{f_{c}}{f_{\alpha}}\right)^{2}} \tag{9.30}
\end{equation*}
$$

If a sharp cut-off is desired, f_{α} should be near to f_{c}. From Eq.9.29, it is clear that for the smaller the value of m, f_{α} comes close to f_{c}. Equation 9.30 shows that if f_{c} and f_{α} are specified, the necessary value of m may then be calculated. Similarly, for m - derived π section, the inductance andcapacitance intheseriesarmconstitutearesonantcircuit.Thus, at f_{α} a frequencycorresponds to infinite attenuation, i.e. at f_{α}

$$
\begin{align*}
m \omega_{r} L & =\frac{1}{\left(\frac{1-m^{2}}{4 m}\right) \omega_{r} C} \\
\omega_{r}^{2} & =\frac{4}{L C\left(1-m^{2}\right)} \\
\text { Since, } & f_{r}=\frac{1}{\pi \sqrt{L C\left(1-m^{2}\right)}} \\
f_{c}=\frac{1}{\pi \sqrt{L C}} & f_{r}=\frac{f_{c}}{\sqrt{1-m^{2}}}=f_{\alpha}
\end{align*}
$$

Thusforboth m-derivedlowpassnetworksforapositivevalueofm($0<m<1$), $f_{\alpha}>f_{c}$.
Equations 9.30 or 9.31 can beusedto choose thevalueof m, knowing f_{c} and f_{r}. After thevalue of m is evaluated, the elements of the T or π-networks can be found from Fig.9.22. The variation of attenuationfor alowpassm- derivedsectioncanbe verifiedfrom $\alpha=2 \cosh ^{-1} V Z_{1} / 4 Z_{2}$ for $f_{c}<f<f_{\alpha}$. For $Z_{1}=$ $j \omega L$ and $Z_{2}=-j / \omega C$ for the prototype.

$$
\therefore \quad \alpha=2 \cosh ^{-1} \frac{m \frac{f}{f_{c}}}{\sqrt{1-\left(\frac{f}{f_{\alpha}}\right)^{2}}}
$$

and

$$
\beta=2 \sin ^{-1} \sqrt{\left|\frac{Z_{1}}{4 Z_{1}}\right|}=2 \sin ^{-1} \frac{m \frac{f}{f_{c}}}{\sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}(1-m)^{2}}}
$$

Figure9.23showsthevariationof α, β andZ ${ }_{o}$ withrespectto frequencyfor anm -derived low pass filter.

Fig.9.23

Example9.3

Designam-derivedlowpassfilterhavingcut-offfrequencyof1kHz, design impedanceof 400Ω, andtheresonantfrequency 1100 Hz .

Solution. $\mathrm{k}=400 \Omega, f_{c}=1000 \mathrm{~Hz} ; f_{\alpha}=1100 \mathrm{~Hz}$ From
Eq.9.30

$$
m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}=\sqrt{1-\left(\frac{1000}{1100}\right)^{2}}=0.416
$$

LetusdesignthevaluesofL andCfora lowpass,K -typefilter(prototypefilter). Thus,

$$
\begin{aligned}
L & =\frac{k}{\pi f_{c}}=\frac{400}{\pi \times 1000}=127.32 \mathrm{mH} \\
C & =\frac{1}{\pi k f_{c}}=\frac{1}{\pi \times 400 \times 1000}=0.795 \mu \mathrm{~F}
\end{aligned}
$$

Theelementsofm-derivedlowpasssectionscanbe obtainedwithreferencetoFig.9.22.
ThustheT-sectionelementsare

$$
\begin{aligned}
& \frac{m L}{2}=\frac{0.416 \times 127.32 \times 10^{-3}}{2}=26.48 \mathrm{mH} \\
& m C=0.416 \times 0.795 \times 10^{-6}=0.33 \mu \mathrm{~F}
\end{aligned}
$$

$$
\frac{1-m^{2}}{4 m} L=\frac{1-(0.416)^{2}}{4 \cdot 0.416} \times 127.32 \times 10^{-3}=63.27 \mathrm{mH}
$$

The π-section elements are

$$
\begin{aligned}
\frac{m C}{2} & =\frac{0.416 \times 0.795 \times 10^{-6}}{2}=0.165 \mu \mathrm{~F} \\
\frac{1-m^{2}}{4 m} \times C & =\frac{1-(0.416)^{2}}{4 \times 0.416} \times 0.795 \times 10^{-6}=0.395 \mu \mathrm{~F} \\
m L & =0.416 \times 127.32 \times 10^{-3}=52.965 \mathrm{mH}
\end{aligned}
$$

Them-derivedLPfiltersectionsareshowninFig.9.24.

Fig.9.24

m-Derived High Pass Filter

InFig.9.25bothm-derivedhighpassTandr-sectionare shown.
If the shunt arm in T - section is series resonant, it offers minimum or zero impedance.Therefore,theoutputiszeroand,thus,atresonancefrequencyorthefrequency corresponds to infinite attenuation.

$$
\omega_{r} \frac{L}{m}=\frac{1}{\omega_{r} \frac{4 m}{1-m^{2}} C}
$$

Fig.9.25

$$
\begin{aligned}
& \omega_{r}^{2}= \omega_{\propto}^{2}= \\
& \frac{1}{\frac{L}{m} \frac{4 m}{1-m^{2}} C}=\frac{1-m^{2}}{4 L C} \\
& \omega_{\propto}=\frac{\sqrt{1-m^{2}}}{2 \sqrt{L C}} \text { or } f_{\propto}=\frac{\sqrt{1-m^{2}}}{4 \pi \sqrt{L C}}
\end{aligned}
$$

FromEq.9.25,thecut-offfrequencyfcofahighpassprototypefilterisgivenby

$$
\begin{align*}
& f_{c}=\frac{1}{4 \pi \sqrt{L C}} \\
& f_{\infty}=f_{c} \sqrt{1-m^{2}} \tag{9.32}
\end{align*}
$$

$$
\begin{equation*}
m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}} \tag{9.33}
\end{equation*}
$$

Similarly,forthem-derived π-section,theresonantcircuitisconstitutedbythe series arm inductance and capacitance. Thus, at f_{α}

$$
\begin{aligned}
& \frac{4 m}{1-m^{2}} \omega_{r} L=\frac{1}{\frac{\omega_{r}}{m} C} \\
& \omega_{r}^{2}=\omega_{\infty}^{2}=\frac{1-m^{2}}{4 L C} \\
& \omega_{\propto}=\frac{\sqrt{1-m^{2}}}{2 \sqrt{L C}} \text { or } f_{\propto}=\frac{\sqrt{1-m^{2}}}{4 \pi \sqrt{L C}}
\end{aligned}
$$

(a)

Fig.9.26
Thusthefrequencycorrespondingtoinfiniteattenuationisthesameforbothsections. Equation 9.33 may be used todetermine m fora given f_{α} and f_{c}. The elements of the $m-$ derivedhighpassTor π-sectionscan befoundfrom Fig.9.25. Thevariationof α, β and Z_{o} with frequency is shown in Fig. 9.26.

Fig. 9.26

Example 9.4.

Designam-derivedhighpassfilterwithacut-offfrequencyof10kHz; design impedanceof5 Ω andm $=0.4$.

Solution.Fortheprototypehighpassfilter,

$$
\begin{aligned}
L & =\frac{k}{4 \pi f_{c}}=\frac{500}{4 \times \pi \times 10000}=3.978 \mathrm{mH} \\
C & =\frac{1}{4 \pi k f_{c}}=\frac{1}{4 \pi \times 500 \times 10000}=0.0159 \mu \mathrm{~F}
\end{aligned}
$$

Theelementsofm-derivedhighpasssectionscanbe obtainedwithreferencetoFig.9.25.Thus, theT-sectionelementsare

$$
\begin{aligned}
\frac{2 C}{m} & =\frac{2 \times 0.0159 \times 10^{-6}}{0.4}=0.0795 \mu \mathrm{~F} \\
\frac{L}{m} & =\frac{3.978 \times 10^{-3}}{0.4}=9.945 \mathrm{mH} \\
\frac{4 m}{1-m^{2}} C & =\frac{4 \times 0.4}{1-(0.4)^{2}} \times 0.0159 \times 10^{-6}=0.0302 \mu \mathrm{~F}
\end{aligned}
$$

The π-section elements are

$$
\begin{aligned}
\frac{2 L}{m} & =\frac{2 \times 0.0159 \times 10^{-3}}{0.4}=19.89 \mathrm{mH} \\
\frac{4 m}{1-m^{2}} \times L & =\frac{4 \times 0.4}{1-(0.4)^{2}} \times 3.978 \times 10^{-3}=7.577 \mathrm{mH} \\
\frac{C}{m} & =\frac{0.0159}{0.4} \times 10^{-6}=0.0397 \mu \mathrm{~F}
\end{aligned}
$$

Tand π sectionsofthem-derivedhighpassfilterareshowninFig.9.27.

Fig.9.27

BANDPASSFILTER

AsalreadyexplainedinSection 9.1,abandpassfilterisonewhichattenuatesallfrequenciesbelow a lower cut-off frequency f_{1} and above an upper cut-off frequency f_{2}. Frequencieslyingbetween f_{1} and f_{2} comprise the pass band , and are transmitted with zero attenuation.A band pass filter may beobtainedbyusingalowpassfilterfollowedbyahighpassfilterinwhichthecut-offfrequency of theLP filterisabovethecut-offfrequency ofthe HP filter, theoverlapthusallowing onlyabandof frequencies to pass. This is not economical in practice; it is more economical to combine the low and high pass functions into a single filter section .

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant frequency,i.e.theresonantfrequencyof theseriesarmandtheresonantfrequencyof theshunt arm are made equal to obtain the band pass characteristic.

Fig.9.28
Forthisconditionofequalresonantfrequencies.

For this condition of equal resonant frequencies.

$$
\omega_{0} \frac{L_{1}}{2}=\frac{1}{2 \omega_{0} C_{1}} \text { for the series arm }
$$

from which,

$$
\omega^{2}{ }_{0} L_{1} C_{1}=1
$$

and

$$
\frac{1}{\omega_{0} C_{2}}=\omega_{0} L_{2} \text { for the shunt aim }
$$

from which, $\quad \omega_{0}^{2} L_{2} C_{2}=1$

$$
\begin{gathered}
\omega_{\mathrm{o}}^{2} L_{1} C_{1}=1=\omega_{\mathrm{o}}^{2} L_{2} C_{2} \\
L_{1} C_{1}=L_{2} C_{2}
\end{gathered}
$$

The impedance of the series arm, Z_{1} is given by

$$
Z_{1}=\left(j \omega L_{1}-\frac{j}{\omega C_{1}}\right)=j\left(\frac{\omega^{2} L_{1} C_{1}-1}{\omega C_{1}}\right)
$$

The impedance of the shunt arm, Z_{2} is given by

$$
\begin{aligned}
Z_{2} & =\frac{j \omega L_{2} \frac{1}{j \omega C_{2}}}{j \omega L_{2}+\frac{1}{j \omega C_{2}}}=\frac{j \omega L_{2}}{1-\omega^{2} L_{2} C_{2}} \\
Z_{1} Z_{2} & =j\left(\frac{\omega^{2} L_{1} C_{1}-1}{\omega C_{1}}\right)\left(\frac{j \omega L_{2}}{1-\omega^{2} L_{2} C_{2}}\right) \\
& =\frac{-L_{2}}{C_{1}}\left(\frac{\omega^{2} L_{1} C_{1}-1}{1-\omega^{2} L_{2} C_{2}}\right)
\end{aligned}
$$

FromEq.9.36

$$
\begin{gathered}
L_{1} C_{1}=L_{2} C_{2} \\
Z_{1} Z_{2}=\frac{L_{2}}{C_{1}}=\frac{L_{1}}{C_{2}}=k^{2}
\end{gathered}
$$

Wherekisconstant.Thus, thefilterisaconstantk- type.Therefore,foraconstantk-typeinthe pass band.

$$
\begin{aligned}
& -1<\frac{Z_{1}}{4 Z_{2}}<0, \text { and at cut-off frequency } \\
& Z_{1}=-4 Z_{2} \\
& Z_{1}^{2}=-4 Z_{1} Z_{2}=-4 k^{2} \\
& Z_{1}= \pm j 2 k
\end{aligned}
$$

i.e.thevalueofZ ${ }_{1}$ atlowercut-offfrequencyisequaltothenegativeofthevalueofZ Z_{1} attheupper cut-offfrequency .

$$
\begin{align*}
& \therefore \quad\left(\frac{1}{j \omega_{1} C_{1}}+j \omega_{1} L_{1}\right)=-\left(\frac{1}{j \omega_{2} C_{1}}+j \omega_{2} L_{1}\right) \\
& \text { or } \\
& \left(\omega_{1} L_{1}-\frac{1}{\omega_{1} C_{1}}\right)=\left(\frac{1}{\omega_{2} C_{1}}-\omega_{2} L_{1}\right) \\
& \left(1-\omega_{1}^{2} L_{1} C_{1}\right)=\frac{\omega_{1}}{\omega_{2}}\left(\omega_{2}^{2} L_{1} C_{1}-1\right) \tag{9.37}
\end{align*}
$$

FromEq.9.34, $\mathrm{L}_{1} \mathrm{C}_{1}=1 / \omega_{0}{ }^{2}$

HenceEq.9.37maybewrittenas

$$
\begin{align*}
\left(1-\frac{\omega_{1}^{2}}{\omega_{0}^{2}}\right) & =\frac{\omega_{1}}{\omega_{2}}\left(\frac{\omega_{2}^{2}}{\omega_{0}^{2}}-1\right) \\
\left(\omega_{0}^{2}-\omega_{1}^{2}\right) \omega_{2} & =\omega_{1}\left(\omega_{2}^{2}-\omega_{0}^{2}\right) \\
\omega_{0}^{2} \omega_{2}-\omega_{1}^{2} \omega_{2} & =\omega_{1} \omega_{2}^{2}-\omega_{1} \omega_{0}^{2} \\
\omega_{0}^{2}\left(\omega_{1}+\omega_{2}\right) & =\omega_{1} \omega_{2}\left(\omega_{2}+\omega_{1}\right) \\
\omega_{0}^{2} & =\omega_{1} \omega_{2} \\
f_{0} & =\sqrt{f_{1} f_{2}} \tag{9.38}
\end{align*}
$$

Fig.9.29

Thus,theresonantfrequencyisthegeometricmeanofthecut-offfrequencies. The variationofthereactanceswithrespecttofrequencyisshowninFig.9.29.

Ifthefilteristerminatedinaloadresistance $R=K$,thenatthelowercut-offfrequency.

$$
\begin{aligned}
\left(\frac{1}{j \omega_{1} C_{1}}+j \omega_{1} L_{1}\right) & =-2 j k \\
\frac{1}{\omega_{1} C_{1}}-\omega_{1} L_{1} & =2 k \\
1-\omega^{2} C_{1} L_{1} & =2 k \omega_{1} C_{1}
\end{aligned}
$$

Since

$$
\begin{aligned}
L_{1} C_{1} & =\frac{1}{\omega_{0}^{2}} \\
1-\frac{\omega_{1}^{2}}{\omega_{0}^{2}} & =2 k \omega_{1} C_{1}
\end{aligned}
$$

or

$$
\begin{aligned}
1-\left(\frac{f_{1}}{f_{0}}\right)^{2}=4 \pi k f_{1} C_{1} \\
1-\frac{f_{1}^{2}}{f_{1} f_{2}}=4 \pi k f_{1} C_{1} \quad\left(\because f_{0}=\sqrt{f_{1} f_{2}}\right) \\
f_{2}-f_{1}=4 \pi k f_{1} f_{2} C_{1}
\end{aligned}
$$

$$
\begin{equation*}
C_{1}=\frac{f_{2}-f_{1}}{4 \pi k f_{1} f_{2}} \tag{9.39}
\end{equation*}
$$

Since

$$
\begin{align*}
L_{1} C_{1} & =\frac{1}{\omega_{0}^{2}} \\
L_{1} & =\frac{1}{\omega_{0}^{2} C_{1}}=\frac{4 \pi k f_{1} f_{2}}{\omega_{0}^{2}\left(f_{2}-f_{1}\right)} \\
L_{1} & =\frac{k}{\pi\left(f_{2}-f_{1}\right)} \tag{9.40}
\end{align*}
$$

To evaluate the values for the shunt arm, consider the equation

$$
\begin{array}{ll}
& Z_{1} Z_{2}=\frac{L_{2}}{C_{1}}=\frac{L_{1}}{C_{2}}=k^{2} \\
\therefore & L_{2}=C_{1} k^{2}=\frac{\left(f_{2}-f_{1}\right) k}{4 \pi f_{1} f_{2}} \tag{9.41}
\end{array}
$$

$$
\begin{equation*}
\text { and } \quad C_{2}=\frac{L_{1}}{k^{2}}=\frac{1}{\pi\left(f_{2}-f_{1}\right) k} \tag{9.42}
\end{equation*}
$$

Equations9.39through9.42arethedesignequations ofaprototypeband passfilter. The variation of α, β with respect to frequency is shown in Fig.9.30 .

Fig.9.30

Example9.5.

Designk-typebandpassfilterhavingadesignimpedanceof500』andcut-off frequencies1kHzand10kHz.

Solution.

$$
k=500 \Omega ; f_{1}=1000 \mathrm{~Hz} ; f_{2}=10000 \mathrm{~Hz}
$$

FromEq.9.40,

$$
L_{1}=\frac{k}{\pi\left(f_{2}-f_{1}\right)}=\frac{500}{\pi 9000}=\frac{55.55}{\pi} \mathrm{mH}=16.68 \mathrm{mH}
$$

FromEq.9.39,

$$
C_{1}=\frac{f_{2}-f_{1}}{4 \pi k f_{1} f_{2}}=\frac{9000}{4 \times \pi \times 500 \times 1000 \times 10000}=0.143 \mu \mathrm{~F}
$$

FromEq.9.41,

$$
L_{2}=C_{1} k^{2}=3.57 \mathrm{mH}
$$

FromEq.9.42,

$$
C_{2}=\frac{L_{1}}{k^{2}}=0.0707 \mu \mathrm{~F}
$$

Eachofthetwoseriesarmsoftheconstantk,T-sectionfilterisgivenby

$$
\begin{aligned}
\frac{L_{1}}{2} & =\frac{17.68}{2}=8.84 \mathrm{mH} \\
2 C_{1} & =2 \times 0.143=0.286 \mu \mathrm{~F}
\end{aligned}
$$

And the shunt arm elements of the network are given by

$$
C_{2}=0.0707 \mu \mathrm{~F} \text { and } L_{2}=3.57 \mathrm{mH}
$$

For the constant- k, π section filter the elements of the series arm are

$$
C_{1}=0.143 \mu \mathrm{~F} \text { and } L_{1}=16.68 \mathrm{mH}
$$

The elements of the shunt arms are

$$
\begin{aligned}
\frac{C_{2}}{2} & =\frac{0.0707}{2}=0.035 \mu \mathrm{~F} \\
2 L_{2} & =2 \times 0.0358=0.0716 \mathrm{H}
\end{aligned}
$$

BANDELIMINATIONFILTER

Abandeliminationfilterisonewhichpasseswithoutattenuationallfrequencieslessthanthelower cut-offfrequency f_{1}, andgreater than the upper cut-off frequency f_{2}. Frequencies lying between f_{1} and f_{2} are attenuated. It is also known as band stop filter. Therefore, a band stop filter can be realized by connecting a low pass filter in parallel with a high pass section, in which the cut-off frequencyoflowpassfilterisbelowthatofa highpassfilter. Theconfigurationsof Tand π constant k band stop sections are shown in Fig.9.31. The band elimination filter is designed in the same manner as is the band pass filter.

Fig.9.31

Asforthebandpass filter, theseriesandshuntarmsarechosento resonateatthesame frequency ω_{0}.Therefore,fromFig.9.31(a),fortheconditionofequalresonantfrequencies

$$
\begin{align*}
\frac{\omega_{0} L_{1}}{2} & =\frac{1}{2 \omega_{0} C_{1}} \text { for the series arm } \\
\omega_{0}^{2} & =\frac{1}{L_{1} C_{1}} \tag{9.43}
\end{align*}
$$

or
$\omega_{0} L_{2}=\frac{1}{\omega_{0} C_{2}}$ for the shunt arm

$$
\begin{equation*}
\omega_{0}^{2}=\frac{1}{L_{2} C_{2}} \tag{9.44}
\end{equation*}
$$

$$
\frac{1}{L_{1} C_{1}}=\frac{1}{L_{2} C_{2}}=k
$$

Thus

$$
L_{1} C_{1}=L_{2} C_{2}
$$

(9.45)

It can be also verified that

$$
\begin{equation*}
Z_{1} Z_{2}=\frac{L_{1}}{C_{2}}=\frac{L_{2}}{C_{1}}=k^{2} \tag{9.46}
\end{equation*}
$$

$$
\text { and } \quad f_{0}=\sqrt{f_{1} f_{2}}
$$

Atcut-offfrequencies, $Z_{1}=-4 Z_{2}$

MultiplyingbothsideswithZ ${ }_{2}$, weget

$$
\begin{aligned}
Z_{1} Z_{2} & =-4 Z_{2}^{2}=k^{2} \\
Z_{2} & = \pm j \frac{k}{2}
\end{aligned}
$$

(9.48)

Iftheloadisterminatedinaloadresistance, $R=k$, thenatlowercut-offfrequency

$$
\begin{aligned}
Z_{2} & =j\left(\frac{1}{\omega_{1} C_{2}}-\omega_{1} L_{2}\right)=j \frac{k}{2} \\
\frac{1}{\omega_{1} C_{2}}-\omega_{1} L_{2} & =\frac{k}{2} \\
1-\omega_{1}^{2} C_{2} L_{2} & =\omega_{1} C_{2} \frac{k}{2}
\end{aligned}
$$

FromEq.9.44,

$$
L_{2} C_{2}=\frac{1}{\omega_{0}^{2}}
$$

$$
\begin{aligned}
1-\frac{\omega_{1}^{2}}{\omega_{0}^{2}} & =\frac{k}{2} \omega_{1} C_{2} \\
1-\left(\frac{f_{1}}{f_{0}}\right)^{2} & =k \pi f_{1} C_{2} \\
C_{2} & =\frac{1}{k \pi f_{1}}\left[1-\left(\frac{f_{1}}{f_{0}}\right)^{2}\right]
\end{aligned}
$$

Since $\quad f_{0}=\sqrt{f_{1} f_{2}}$

$$
\begin{aligned}
& C_{2}=\frac{1}{k \pi}\left[\frac{1}{f_{1}}-\frac{1}{f_{2}}\right] \\
& C_{2}=\frac{1}{k \pi}\left[\frac{f_{2}-f_{1}}{f_{1} f_{2}}\right]
\end{aligned}
$$

(9.49)

FromEq.9.44,

$$
\begin{aligned}
\omega_{0}^{2} & =\frac{1}{L_{2} C_{2}} \\
L_{2} & =\frac{1}{\omega_{0}^{2} C_{2}}=\frac{\pi k f_{1} f_{2}}{\omega_{0}^{2}\left(f_{2}-f_{1}\right)}
\end{aligned}
$$

Since

$$
\begin{align*}
& f_{0}=\sqrt{f_{1} f_{2}} \\
& L_{2}=\frac{k}{4 \pi\left(f_{2}-f_{1}\right)} \tag{9.50}
\end{align*}
$$

AlsofromEq. 9.46,

$$
\begin{align*}
k^{2} & =\frac{L_{1}}{C_{2}}=\frac{L_{2}}{C_{1}} \\
L_{1} & =k^{2} C_{2}=\frac{k}{\pi}\left(\frac{f_{2}-f_{1}}{f_{1} f_{2}}\right) \tag{9.51}
\end{align*}
$$

$$
\text { and } C_{1}=\frac{L_{2}}{k^{2}}
$$

(9.52)

$$
=\frac{1}{4 \pi k\left(f_{2}-f_{1}\right)}
$$

Fig.9.32
The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49 throughEq.9.52isthedesignequationsofaprototype bandeliminationfilter.Thevariationof α, β with respect to frequency is shown in Fig.9.33.

Fig.9.33

Example9.6.

Designabandeliminationfilterhavingadesignimpedanceof600תand cut-off frequenciesf ${ }_{1}=2 \mathrm{kHzandf}_{2}=6 \mathrm{kHz}$.

Solution. $\left(f_{2}-f_{1}\right)=4 \mathrm{kHz}$

MakinguseoftheEqs.9.49through9.52inSection9.10,wehave

$$
\begin{aligned}
& L_{1}=\frac{k}{\pi}\left(\frac{f_{2}-f_{1}}{f_{2} f_{1}}\right)=\frac{600 \times 4000}{\pi \times 2000 \times 6000}=63 \mathrm{mH} \\
& C_{1}=\frac{1}{4 \pi k\left(f_{2}-f_{1}\right)}=\frac{1}{4 \times \pi \times 600(4000)}=0.033 \mu \mathrm{~F} \\
& L_{2}=\frac{1}{4 \pi k\left(f_{2}-f_{1}\right)}=\frac{600}{4 \pi(4000)}=12 \mathrm{mH} \\
& C_{2}=\frac{1}{k \pi}\left[\frac{f_{2}-f_{1}}{f_{1} f_{2}}\right]=\frac{1}{600 \times \pi}\left[\frac{4000}{2000 \times 6000}\right]=0.176 \mu \mathrm{~F}
\end{aligned}
$$

Each of the two series arms of the constant k, T-section filter is given by

$$
\begin{aligned}
\frac{L_{1}}{2} & =31.5 \mathrm{mH} \\
2 C_{1} & =0.066 \mu \mathrm{~F}
\end{aligned}
$$

And the shunt arm elements of the network are

$$
L_{2}=12 \mathrm{mH} \text { and } C_{2}=0.176 \mu \mathrm{~F}
$$

For the constant k, π-section filter the elements of the series arm are

$$
L_{1}=63 \mathrm{mH}, C_{1}=0.033 \mu \mathrm{~F}
$$

and the elements of the shunt arms are

$$
2 L_{2}=24 \mathrm{mH} \text { and } \frac{C_{2}}{2}=0.088 \mu \mathrm{~F}
$$

[^0]: SquaringEsq.9.3and9.4andsubtractingEq.9.4fromEq.9.3,weget

